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Abstract 
 
An increasing number of tasks require people to explore, navigate 
and search extremely complex data sets visualized as graphs. 
Examples include electrical and telecommunication networks, 
web structures, and airline routes. The problem is that graphs of 
these real world data sets have many interconnected nodes, 
ultimately leading to edge congestion: the density of edges is so 
great that they obscure nodes, individual edges, and even the 
visual information beneath the graph. To address this problem we 
developed an interactive technique called EdgeLens. An 
EdgeLens interactively curves graph edges away from a person’s 
focus of attention without changing the node positions. This opens 
up sufficient space to disambiguate node and edge relationships 
and to see underlying information while still preserving node 
layout. Initially two methods of creating this interaction were 
developed and compared in a user study. The results of this study 
were used in the selection of a basic approach and the subsequent 
development of the EdgeLens. We then improved the EdgeLens 
through use of transparency and colour and by allowing multiple 
lenses to appear on the graph. 
 
CR Categories: I.3.6[Computer Graphics]:Interaction Techniques 
 
Keywords: Navigation, graph layout, distortion lens, information 
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1 Introduction 
 
In everyday life, we come across many types of information that 
we wish to understand better. Often it is the complex relationships 
within the information that are of particular interest, such as the 
trade relationships among cities, or the physical connections 
inherent in telephone systems, power grids, airline routes and road 
maps. Graphs are a popular method for representing this kind of 
complex information, allowing us to visualize trade routes by 
representing the cities as nodes and trade relationships as edges. 
Yet real world data sets tend to be huge, and as their size increases 
so does the complexity of the graph layout. In practice, this leads 
to edge congestion, where excessive edge density in a region leads 
to edge-crossings and overlapped edges, which in turn obscures 
nodes and any extra visuals under these regions. Because of edge 
congestion, people can have difficulties in understanding the 
information represented by the graph. For example, Figure 1 
shows a real world graph of NorthWest Airlines routes taken from 
their in-flight magazine. In it, we see that edge congestion is 
severe enough to create regions entirely covered by edges. It is  

 
Figure 1: Airlines routes from NorthWest Airlines 

difficult to tell if an air route passes over a city or stops at it. It is 
hard to read the information on the underlying graphic. It is hard 
to trace a particular route because of how edges overlap other 
edges. Yet this is not a particularly dense graph. 
 
In this paper we introduce the concept of EdgeLens, an interactive 
method for managing edge congestion. After defining the edge 
congestion problem (Section 2) and describing how others have 
approached this problem (Section 3), we outline the EdgeLens 
approach and two particular ways it can be realized (Section 4). 
Through our user study (Sections 5 and 6), we show how the 
EdgeLens, based on B-splines, proved superior. Finally, we 
describe the EdgeLens algorithm and offer several refinements 
(Section 7). 
 
2 The Edge Congestion Problem 
 
Graph layout is a challenging problem [Di Battista et al. 1994]. It 
increases in difficulty as the size and complexity of the data 
increases, and can be particularly onerous if one wants to 
incorporate readability considerations into the layout [Purchase 
2000]. To add to this problem, some data visualizations further 
constrain the layout to reflect data semantics e.g., relative node 
positioning in relation to the rest of the data. Our concern in this 
paper is how edges appear within a graph, for previous studies 
have shown that edge placement can cause considerable difficulty 
in how people read graphs [Purchase 1997].  
 
One method for managing edge layout is to alter the graph layout 
itself e.g., by moving nodes to positions that minimize edge 
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densities, crossovers and/or occlusions. This approach has been 
shown to be difficult [Di Battista et al. 1994] and is not amenable 
to all graph layouts. For example, Figure 1’s graph of airline 
routes represents cities as nodes, where nodes are located at 
certain relative locations to reflect the city’s geographic 
semantics. Even if the layout could theoretically be reorganized to 
eliminate edge crossings, much meaning would be lost. 
 
While the semantics of node positioning can add value to the 
visualization, they also introduce the possibility of ambiguities 
due to the way edges overlap.  To show how this happens in even 
a very simple case, Figure 2 illustrates the inherent ambiguities in 
a three-node graph.  If we represent connected edges as straight 
lines, we get Figure 2a: the viewer has the impression that the 
central node is connected by an edge to the node on the top and by 
another edge to the node on the bottom. Yet this may not be the 
case. If we constrain edges to their connected nodes but otherwise 
‘curve’ the edges to reveal what is underneath, we can see other 
possibilities: perhaps the end nodes only connect to the middle 
node (2b), or only the end nodes are connected  (2c), or while the 
end nodes are connected only one of these connect to the central 
node (2d+e), or it is in fact fully connected (2f).  
 
Aside from edge occlusion, other ambiguities exist. When an edge 
passes under a node, the reader cannot tell if it is connected or 
unconnected.  If many edges are drawn over or near a node, they 
can obscure that node and its labels. If information exists under 
the node, as in Figure 1’s outline of North America, that 
information becomes hard to see. It is this problem of edge 
congestion that we address in this paper. To foreshadow what is to 
come, the curving of edges in Figure 2 is exactly what the 
EdgeLens does: by distorting the edge shape, the reader can 
disambiguate the configuration to see how nodes are truly 
connected and to open up the graph to reveal underlying 
information.   
 
3 Previous Approaches to Edge Congestion 
 
Many different attempts have been made to address or at least 
minimize the problem of edge congestion.  
 
Layout. Manual or automatic graph layout can potentially 
minimize edge crossing. In practice, optimal solutions are difficult 
to find [Di Battista et al. 1994, Herman 2000, Wills 1999,].  

Instead, we can let users interactively move nodes around (to see 
how they are connected or to alter the layout). This does not work 
well due to the extra work involved, and fails if a node’s position 
is important due to its semantic meaning (such as in Figure 1). 
 
Filtering. Filtering relieves congestion by removed ‘unimportant’ 
edges, thus revealing only the important relationships in the graph 
[Consens et la. 1992, Furnas 1986, Mukherjea 1995]. For 
example, Figure 3b shows a filtered view of the graph in Figure 
3a, where the edges that remain were somehow judged more 
relevant than the filtered edges. One problem is that this only 
works if we have a way to distinguish ‘important’ from 
‘unimportant’ edges. Another problem is that filtering interferes 
with context: while we see particular edges, we lose how they 
relate with other now invisible edges (Figure 3b). Filtering has 
also been used partially to remove the central portions of edges 
interactively (Figure 3c). This leaves indications that there was an 
edge and shows its direction [Becker et al. 1995], but precise 
relationships are now hard to determine because connections are 
now left to the ‘minds eye’. 
 
Magnification. Magnification enlarges areas of a graph – either 
linearly or non-linearly – so they can be seen in greater detail. 
Many approaches now exist: insets [Ware and Lewis 1995], 
fisheye views and other distortion based approaches [Furnas 1986, 
Lamping et al. 1994, Keahey and Robertson 1996, Leung and 
Apperley 1994], Magic Lenses [Bier et al. 1993], and zoomable 
user interfaces [Bedersen and Hollan 1994]. The problem is that 
enlarging does not necessarily disambiguate edge congestion. 
  

  

  

Figure 4: Magnification alone does not help: top left show an 
ambiguous node; top right, full zoom; bottom left, an inset; 
bottom right, a fisheye. 
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Figure 3: Various filtering approaches: from the graph on the 
left the centre graph removes several edges and the right most 

graph removes the central portion of the edges 

 
  a    b    c     d      e        f 

Figure 2: Ambiguity: the three node graph on the left could 
be as it appears or any of the configurations to the right 



For example, Figure 4a shows a portion of a graph layout with an 
ambiguous node highlighted in green. The magnified inset in 4b 
and the full zoom in 4c offer no further clarification. While Figure 
4d uses a fisheye distortion to magnify nodes, this actually makes 
it harder to tell which edges are incident to the now magnified 
green node because it occludes a larger area. 
 
4 The EdgeLens: an Interactive Approach 
 
Our goal is to relieve problems caused by edge congestion. Our 
method is to develop the EdgeLens: an interactive technique that 
respects the semantics of node layout, disambiguates edge and 
node overlapping, and clarifies details about the graph structure. 
 
To explain, we first assume that the locations of the nodes have a 
semantic meaning, and consequently nodes should not be moved.  
We also assume that the meaning of an edge is in its actual 
attachment to nodes: as long as the edge remains visible and 
attached to the appropriate nodes its semantics will remain intact. 
Given this, the basic idea behind the EdgeLens is to interactively 
move edges without detaching them from the nodes, all the while 
keeping the nodes stationary. Figure 2b-f showed a simple 
example: while the nodes and edge connections are intact, the 
lines defining the edges are moved by distorting their shape. In 
this manner we hope to disambiguate graph layouts without 
changing their meaning.  
 
The EdgeLens borrows from ideas in detail-in-context distortion-
based viewing. It too uses a linear lens with a point focus, and a 
limited lens radius that define the range of their effects. It differs 
from a detail-in-context lens in that: 
• We separate the effects of displacement and magnification, and 

use displacement only. This distinction has previously been 
mentioned [Leung and Applerley 1994, Keahey and Robertson 
1996], and has been applied in 3D access distortion 
[Cowperthwaite et al. 1996, Carpendale et al. 1997].   

• The detail-in-context distortion is applied only to the edges, and 
not to any other part of the graph or underlying image. That is, 
the data is divided into two discrete parts, the edges and 
everything else. The effects of the distortion field are applied to 
the edges only.  

 
We initially developed two types of EdgeLenses using a Bubble 
and a Spline approach to distort lines. Both are implemented using 
Elastic Presentation Framework (EPF) [Carpendale and 
Montagnese 2001]. 
 
The Bubble approach: This approach affects the local area only, 
as defined by the lens radius. As Figure 5a illustrates, all edges are 
provided with bend points and drawn as line segments from bend 
point to bend point. The bend points that are within the lens radius 
are displaced using a linear lens from EPF and the edge is redrawn 
[Carpendale and Xing 2001]. 
 
The Spline approach: With this approach, control points are 
calculated for all edges that fall within the influence of the lens. 
Then the distortion field is applied to these control points and the 
control points are used to apply a B-spline to the edge.  This 
creates a smooth curve that extends from node to node (Figure 
5b). 
 
As seen in Figure 5, the algorithmic, visual and interactive effects 
of these two approaches are very different. The Bubble approach 

only affects a small localized area, while the Spline approach 
shifts the edges it touches along their entire length. The 
complexity of the Bubble approach is dependent on the number of 
edge-bend-points and these in turn control the smoothness of the 
curve.  The complexity of the Spline approach is dependent on the 
spline-control-points. At this point, rather than chose the preferred 
interaction based on algorithmic elegance, we ran a user study to 
compare these two approaches and to help us select the method 
we would develop into the EdgeLens. 
 
5 Comparing the Bubble and Spline Approaches 
 
The Bubble and Spline approaches to the EdgeLens both mitigate 
edge congestion problems by revealing nodes and edges that 
would otherwise be occluded. We wanted to refine and extend one 
of these approaches, but we did not yet know which was better at 
managing edge congestion in practice. Consequently, we ran a 
controlled user study comparing people’s performance and 
preferences when using the Bubble vs Spline approaches to path-
finding within a geographic graph representing airline routes in 
Canada (Figure 6). The study and our results are discussed here. 
 
Hypothesis: Because we had no a priori notion as to which lens 
would be better overall, we began with a null hypothesis:  
 

There is no difference in people’s performance when using the 
Bubble vs. Spline approach to perform path-finding tasks of 
varying difficulty in a graph. Performance is measured by the 
time (seconds) to find the path, the path quality (incorrect, sub-
optimal, optimal) of the path found, and the participant’s 
certainty of correctness that they chose a correct path with a 
given lens (using a five point Likert measure anchored at very 
uncertain to very certain).  

 

 

   
Figure 5a: Bubble approach Figure 5b: Spline approach 

Figure 6: The software used in the study 



From this hypothesis, independent variables are the Lens Type (2) 
X Task Difficulty (4). Dependant variables are time, path quality, 
and certainty of correctness. In actuality, we did expect that harder 
tasks would take longer to do, but wanted to check that there was 
no interaction between Lens Type and Task Difficulty. 
 
Participants. We recruited 16 participants (8 males and 8 
females) with formal education in computer science. All were 
experienced with both graphs and computers, but had no prior 
experience with EdgeLenses 
 
Materials. We created a practice graph, and a main graph that 
illustrated airline routes (edges) between major Canada cities 
(nodes). City nodes were located at their approximate geographic 
position. As visible in Figure 6, the main graph contains several 
areas of congestion: the overlapping edges means some edges 
occlude one or more others, and some nodes are partially 
obscured.  
 
We then created eight route-finding tasks of varying difficulty 
around these graphs: easy, medium-easy, medium and hard. There 
are two tasks per category. Easy tasks are paths with two 
intermediate nodes and do not go through congested areas and 
have no overlapping areas. In contrast, hard tasks have 5 or more 
intermediate nodes, goes through overlapping edges and 
congested areas. Each task used different starting and destination 
nodes. Two otherwise identical versions of the software 
implemented either the Bubble or Spline approach as just 
described. The software would load a graph, and the people could 
then explore that graph by moving the particular lens around it 
with their cursor. People could also adjust the lens radius through 
a graphical slider.  The software timed how long it took to do each 
task. A post-session questionnaire collected participant’s 
preferences between the two lenses as well as their comments. 
 
Design and Method. The experimental design was within-
subjects for both the lens type and task difficulty. Lens type was 
counter-balanced ordered to minimize learning effects. That is, we 
randomly assigned half the subjects to start with the Bubble 
approach, while the other half started with the Spline approach. 
The sequence of events is as follows.  
 
1. A participant is seated in a quiet room in front of a computer 

that displays the EdgeLens system running a particular lens.  
2. The experimenter then explained graph terminology and 

concepts (nodes and edges), showed the participant how to 
control the lenses with the software, and explained what he or 
she had to do in each trial. In particular, participants were asked 
to imagine that they were a travel agent, where they were using 
this software to look for an optimal airline route from one city 
to another, perhaps including stopovers. Optimal routes are 
those that pass through the least number of cities possible, and 
do not go through a city more than once. 

3. The participant then began with a practice session with no 
assigned tasks, where he or she interacted with a practice graph 
until comfortable with the use of that lens. 

4. The participant was then given each task in turn, ordered by 
difficulty from easy, to medium-easy, to medium, to hard.  For 
each task: 
• the experimenter coloured the start, end and (optional) 

stopover city that comprised the task question, explained 
what had to be done, and asked the participant to think aloud 
while doing the task; 

• the participant clicked a button to start the timing; 

• while exploring 
the graph with 
the lens, the 
participant 
selected the 
desired route 
by clicking the 
intermediary 
nodes (cities);  

• the 
experimenter 
videotaped user 
actions, and 
wrote down 
participant 
comments, how 
they used the 
Edgelens, and the route picked. 

• the participant clicked the button to stop timing. 
5. Steps 3-4 would be repeated with the other lens. Tasks differed 

from set to set, but were equivalent in difficulty. 
6. Participants answered the post-session questionnaire. 
 
6 Results 
 
Time. We logged the time required for each task to be completed. 
Thus we had 16 data points (one per participant) for each lens at a 
particular task difficulty, for a total of 128 data points. Figure 7 
plots the means as a graph, where each bar shows the mean time 
for each level of task difficulty to be completed using the Bubble 
approach and the Spline approach.  
 
We analyzed this data with a two-way Analysis of Variance: Lens 
Type (2) X Task Difficulty (4). Results show a main effect for 
Lens Type (F=6.22, p = .014) and Task Difficulty (F=14.94, p = 
.000), but no interaction (F=.71, p=.54).  Thus we reject the null 
hypothesis, for we saw that people are faster at completing path-
finding tasks with the Spline vs the Bubble at comparable tasks. 
We also saw that overall time increases with both the Bubble and 
Spline methods when performing path-finding tasks of varying 
difficulty in a graph. 
 
Path quality. All participants produced a path for each trial, for 
each lens at a particular task difficulty. A path was graded as 
optimal if it passed through the least number of cities (nodes) 
possible; sub-optimal if it was correct but passed through more 

Figure 7:  Participants complete 
tasks faster when using the Spline 

approach 

Figure 8. Spline approach led to fewer incorrect paths and 
more optimal paths per task type.



nodes than necessary; and incorrect if the path did not meet the 
task specifications. All results are plotted in Figure 8, where each 
bar shows the ratio of optimal, sub-optimal, and incorrect paths 
for a particular lens and task difficulty. 
 
The graph clearly shows that, in all cases, participants using the 
Spline approach had far fewer incorrect paths per task type when 
compared to the Bubble approach. Similarly, people produced 
more optimal paths with the Spline vs Bubble approach (two-
sample proportion test p<.05).  We reject the null hypothesis for 
path quality, as people produce more optimal paths and fewer 
incorrect paths with the Spline vs the Bubble at comparable tasks. 
 
Certainty of correctness. As part of the post-test questionnaire, 
participants were asked: How certain are you with the correctness 
of the airline routes you picked and they responded on a 5 point 
scale ranging from very uncertain to very certain for both lens 
types.  Results are plotted in Figure 9. A pairwise T-test shows 
this is a statistically significant difference (p<.05).  As indicated in 
the graph, in almost all cases every participant had a higher 
certainty of correctness with the Spline approach. All but two 
participants gave it a high score between 4 and 5. 
 
Thus we reject the null hypothesis for certainty of correctness, for 
we saw that people have greater certainty that they found a correct 
path with the Spline vs the Bubble approach over all tasks. 
 
Participants’ preferences and comments. The post-test 
questionnaire asked subjects which Edgelens they preferred, and 
to comment on their choice. Every single participant preferred the 
Spline over the Bubble approach. Comments were generally 
negative about the Bubble approach, and positive about the Spline 
approach. Some examples are included here. 
 

• Spline Edgelens 
o “Very good looking – appealing.” 
o “Works great for identifying if a path exists between two 

points.” 
o “It actually identifies routes (edges) very well.” 

• Bubble Edgelens 
o “Edges bend in a weird way.” 
o “Awkward & not useful.” 
o “Harder to use and the effect is not as clear.” 
o “I don’t like this lens at all.” 

 

Summary. In all quantitative and qualitative measures, the Spline 
approach outperforms the Bubble approach when people use them 
for path-finding tasks of varying difficulty.  
 
7 The EdgeLens: implementation details and 

refinements 
 
Because the study results clearly suggest that the Spline approach 
is superior, we based our refined implementation of the EdgeLens 
on the Spline approach. We also describe how we enhanced its 
effect with the selective use of transparency, with colour, by 
providing multiple EdgeLenses in a graph. 
 
The Algorithm: An EdgeLens has a centre, a magnitude, and a 
radius of influence. User interaction is done by interactively 
placing and moving this centre, drawn as a small coloured square 
or circle. Moving and adjusting the EdgeLens produces the visible 
effect of moving edges. The user can also adjust the magnitude of 
the edge displacement through a control such as a slider (e.g., as 
in Figure 6). This displacement drops off linearly from the centre 
until it reduces to no effect.   
 
Algorithmically, there are four basic steps to create an EdgeLens, 
annotated in Figure 10. 
 
Step 1: Decide which edges will be affected by the EdgeLens.  If 

a perpendicular line can be drawn from an edge in the graph to 
the EdgeLens centre and this point is within the EdgeLens’ 
radius of influence, then that edge will be affected by the 
EdgeLens. The point on the edge from which the 
perpendicular line can be drawn is the seed control point (ss).  
In Figure 10, the edge is affected by e-lens1, but not by e-
lens2. 

 
Step 2: Use the seed control point (sc) to calculate the 

displacement. A point-focus linear lens from EPF library 
[Carpendale and Montagnese 2001] is used to calculate the 
location of the displaced seed control point (dis-sc). The 
magnitude of the displacement factor can be set by the user, 
and this in turn affects the resulting location of dis-sc. In EPF, 
the displacement factor is interpreted as magnification. EPF 
calculates the projected height in 3D to achieve this 
magnification and then back-projects it. The mathematics of 
this calculation is fully explained in [Carpendale and 
Montagnese 2001]. For the EdgeLens, we use the back-
projected 2D location to displace the seed control point. 

 

Figure 9: Participants were more certain that their paths 
were correct when using the Spline approach 

Figure 10: The workings of an EdgeLens 

(sc)

(dis-sc)

(c1) (c2) 

(n2)
(n1) 



Step 3: Calculate the control points for the spline. We use dis-sc to 
calculate the two control points c1 and c2 with one on each 
side of dis-sc. These three points are lined up on a straight 
line, which is parallel to the unadjusted edge (Figure 10). The 
actual position of c1 can be calculated based on the formula: 
dc = de * r where de is the distance from sc to n1, dc is the 
distance from dis-sc  to c1, and r is a number between 0 and 1. 
Similarly, c2 uses the same formula with the distance from sc 
to n2 be de, the distance from dis-sc to c2 be dc. Notice that c1 
and c2 will always stay in between n1 and n2. 

 
Step 4: Draw a curved edge with a B-spline. The control points, 

n1, c1, c2 and n2  are used to draw a B-spline. 
 
We can change the curvature of curved edges by adjusting the 
ratio described in Step 3 of creating an EdgeLens. Doing so, we 
move the locations of control points c1 and  c2  and thus change 
the way edges curve.  
 
When an EdgeLens centre and its seed control point have exactly 
the same location, if the calculations were done in 2D, there 
would be a problem in deciding which direction to displace the 
edge. This is known as the polar problem. The polar problem 
arises when, from the perspective of a point in question, all 
directions resolve to south (or north as the case may be). 
However, since EPF’s calculations [Carpendale and Montagnese 
2001] are done in 3D, all initial displacements are calculated as 
towards the viewpoint. For the EdgeLens to operate in 2D, we 
simply use the back-projection to find the location of the 
displaced seed control point, dis-sc. In this way the affected edge 
is pushed to the right when it is approached from the left, it 
returns through neutral as the EdgeLens passes across it and then 
is pushed to the left when the EdgeLens is on the right. 
 

a  b  c  

Figure 11: Applying transparency. a) a graph with 
considerable edge crowding; b) an EdgeLens reveals hidden 

structure; c) transparency makes this more clear. 

Transparency: As a person moves the EdgeLens focal point, the 
movement of the affected edges makes the emerging graph 
structure quite noticeable. However, when these edges are 
stationary, additional visual cues can be helpful in discriminating 
between affected edges from unaffected ones.  One solution is to 
adjust the transparency level of the curved edges. For example, 
Figure 11a shows a graph with considerable edge density, and 
Figure 11b applies an EdgeLens to this graph to reveal two 
previously hidden nodes. Figure 11c adds transparency to the 
curved edges, which further clarifies the structure. An additional 
advantage of transparency is that users can now see through 

clusters of edges, revealing information that would otherwise have 
been obscured by solid edges. Figure 12 shows an example, where 
the labels Kingston and Toronto are now clearly visible even 
though they overlap some of the now-transparent edges.  
 
Excluding Edges: People sometimes want to understand edge 
relationships between specific nodes, and consequently they may 
want to apply the EdgeLens selectively to move all but the desired 
edges to the side. For example, Figure 13a shows a graph where a 
person has special interest in the edges connected the 2nd node 
down from the top-right; because the EdgeLens moves these 
edges aside as well, their connections are hard to see. To solve 
this, we let people select particular nodes, which excludes their 
attached edges from the effect of the EdgeLens. These nodes and 
unaffected edges are coloured to further assist reading the graph 
structure. As seen in Figure 13b, the user has selected the (now 
red) node, and when the lens is moved near this excluded node, all 
connected edges (coloured red as well) are kept straight. 
 

  

Figure 12: EdgeLens plus transparency reveals labels 

 

 

Figure 13: The edges of a selected node are excluded from the 
EdgeLens effect and coloured red 

 
Multiple Edgelenses: When people are exploring and comparing 
different parts of a graph, it would be convenient if there were 
more than one EdgeLens available. Our last enhancement supplies 
multiple EdgeLenses, where one can position a lens on a section 
of a graph and use another lens to examine other areas of the same 
graph. 
 
Our algorithm smoothly integrates multiple EdgeLenses. Every 
curved edge has two control points, other than those that are 
located at the nodes, that are used to determine the way it curves. 



The three images in Figure 14 all show an edge under the 
influence of two EdgeLenses, where the centre point for one of 
the lenses is shown as a red circle and the other as a blue circle.  
The control points for this edge, as created by each EdgeLens, are 
displayed as triangles, each coloured red and blue to match the 
centre point. The green triangles are the control points that are 
actually used to displace the edge. They are located by averaging 
the x and y locations of control points generated by the two 
EdgeLenses. As seen in Figure 14, the visual effect is that the 
edge balances its curvature to reflect the interaction between the 
two interacting lenses.  
 

   
Figure 14: The effect of two EdgeLenses on a single edge: left, red 
EdgeLens is to the left of the edge and the blue EdgeLens is to the 

right – the curvature is lessened; centre, the location of the red and 
blue EdgeLenses are balanced and counteract the affect of each other; 

right, as the blue EdgeLens moves to the left joining the the red 
EdgeLens on the same side the combined effect curves the edge. 

In general, the algorithm can be applied to more than one 
EdgeLens. As described in Step 3 of EdgeLens algorithm, each 
lens determines the positions of two control points with one on 
each side of the lens. When there are n EdgeLenses affecting the 
edge, the average of x-coordinates of all control points on the 
same side of the lens is the resulting x-coordinate of the final 
control point on that side. Similarly the y-coordinate of the final 
control point is the average of all y-coordinates. 

To show how this works on a complex graph, Figure 15 illustrates 
with a graph of a portion of the Department of Computing Science 
web site at the University of Calgary. Image A is a simple radial 
layout; image B shows single EdgeLens revealing some of the 
graph structure; image C shows two EdgeLenses revealing detail 
in two different areas. 

 
8 Conclusions 
 
The primary contribution in this paper is to describe the 
development of the EdgeLens, an interactive solution to that lets 
people explore graphs containing considerable edge congestion.  
 
 
 

 
 

 
 

 
Figure 15: This graph represents a subset of the web pages of the 
Department of Computing Science at the University of Calgary. 

Image A, is a simple radial layout; image B, shows single EdgeLens 
revealing some of the graph structure; image C shows two 

EdgeLenses. 

A

B

C



The EdgeLens works because it: 
 maintains the nodes in original layout, 
 interactively moves edges, 
 helps to removes ambiguities, 
 clarifies graph structure, and  
 reveals hidden information underneath the graph structure. 

We developed and offered two possible interaction candidates, 
Bubble and Spline, and we saw through a user study that the 
Spline-based approach was much preferred and significantly 
helped participants with their tasks. 
 
Subsequently, we described the EdgeLens algorithm in detail. We 
also provided enhancements to its use: transparency, the ability to 
exclude and colour selected edges from the EdgeLens effect, and 
the ability for people to create multiple EdgeLenses in a single 
graph. The EdgeLens effect makes a powerful new tool for 
exploring information and relationships in information-dense 
graphs. 
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