
EdgeLens:
An Interactive Method for Managing Edge Congestion in Graphs

Nelson Wong*

Department of Computer Science
University of Calgary

Sheelagh Carpendale†
Department of Computer Science

University of Calgary

Saul Greenberg‡
Department of Computer Science

University of Calgary

Abstract

An increasing number of tasks require people to explore, navigate
and search extremely complex data sets visualized as graphs.
Examples include electrical and telecommunication networks,
web structures, and airline routes. The problem is that graphs of
these real world data sets have many interconnected nodes,
ultimately leading to edge congestion: the density of edges is so
great that they obscure nodes, individual edges, and even the
visual information beneath the graph. To address this problem we
developed an interactive technique called EdgeLens. An
EdgeLens interactively curves graph edges away from a person’s
focus of attention without changing the node positions. This opens
up sufficient space to disambiguate node and edge relationships
and to see underlying information while still preserving node
layout. Initially two methods of creating this interaction were
developed and compared in a user study. The results of this study
were used in the selection of a basic approach and the subsequent
development of the EdgeLens. We then improved the EdgeLens
through use of transparency and colour and by allowing multiple
lenses to appear on the graph.

CR Categories: I.3.6[Computer Graphics]:Interaction Techniques

Keywords: Navigation, graph layout, distortion lens, information
visualization, edge congestion, interactive visualization

1 Introduction

In everyday life, we come across many types of information that
we wish to understand better. Often it is the complex relationships
within the information that are of particular interest, such as the
trade relationships among cities, or the physical connections
inherent in telephone systems, power grids, airline routes and road
maps. Graphs are a popular method for representing this kind of
complex information, allowing us to visualize trade routes by
representing the cities as nodes and trade relationships as edges.
Yet real world data sets tend to be huge, and as their size increases
so does the complexity of the graph layout. In practice, this leads
to edge congestion, where excessive edge density in a region leads
to edge-crossings and overlapped edges, which in turn obscures
nodes and any extra visuals under these regions. Because of edge
congestion, people can have difficulties in understanding the
information represented by the graph. For example, Figure 1
shows a real world graph of NorthWest Airlines routes taken from
their in-flight magazine. In it, we see that edge congestion is
severe enough to create regions entirely covered by edges. It is

Figure 1: Airlines routes from NorthWest Airlines

difficult to tell if an air route passes over a city or stops at it. It is
hard to read the information on the underlying graphic. It is hard
to trace a particular route because of how edges overlap other
edges. Yet this is not a particularly dense graph.

In this paper we introduce the concept of EdgeLens, an interactive
method for managing edge congestion. After defining the edge
congestion problem (Section 2) and describing how others have
approached this problem (Section 3), we outline the EdgeLens
approach and two particular ways it can be realized (Section 4).
Through our user study (Sections 5 and 6), we show how the
EdgeLens, based on B-splines, proved superior. Finally, we
describe the EdgeLens algorithm and offer several refinements
(Section 7).

2 The Edge Congestion Problem

Graph layout is a challenging problem [Di Battista et al. 1994]. It
increases in difficulty as the size and complexity of the data
increases, and can be particularly onerous if one wants to
incorporate readability considerations into the layout [Purchase
2000]. To add to this problem, some data visualizations further
constrain the layout to reflect data semantics e.g., relative node
positioning in relation to the rest of the data. Our concern in this
paper is how edges appear within a graph, for previous studies
have shown that edge placement can cause considerable difficulty
in how people read graphs [Purchase 1997].

One method for managing edge layout is to alter the graph layout
itself e.g., by moving nodes to positions that minimize edge

*e-mail: yw@cs.ucalgary.ca

†e-mail: sheelagh@cs.ucalgary.ca

‡e-mail: saul@cs.ucalgary.ca

densities, crossovers and/or occlusions. This approach has been
shown to be difficult [Di Battista et al. 1994] and is not amenable
to all graph layouts. For example, Figure 1’s graph of airline
routes represents cities as nodes, where nodes are located at
certain relative locations to reflect the city’s geographic
semantics. Even if the layout could theoretically be reorganized to
eliminate edge crossings, much meaning would be lost.

While the semantics of node positioning can add value to the
visualization, they also introduce the possibility of ambiguities
due to the way edges overlap. To show how this happens in even
a very simple case, Figure 2 illustrates the inherent ambiguities in
a three-node graph. If we represent connected edges as straight
lines, we get Figure 2a: the viewer has the impression that the
central node is connected by an edge to the node on the top and by
another edge to the node on the bottom. Yet this may not be the
case. If we constrain edges to their connected nodes but otherwise
‘curve’ the edges to reveal what is underneath, we can see other
possibilities: perhaps the end nodes only connect to the middle
node (2b), or only the end nodes are connected (2c), or while the
end nodes are connected only one of these connect to the central
node (2d+e), or it is in fact fully connected (2f).

Aside from edge occlusion, other ambiguities exist. When an edge
passes under a node, the reader cannot tell if it is connected or
unconnected. If many edges are drawn over or near a node, they
can obscure that node and its labels. If information exists under
the node, as in Figure 1’s outline of North America, that
information becomes hard to see. It is this problem of edge
congestion that we address in this paper. To foreshadow what is to
come, the curving of edges in Figure 2 is exactly what the
EdgeLens does: by distorting the edge shape, the reader can
disambiguate the configuration to see how nodes are truly
connected and to open up the graph to reveal underlying
information.

3 Previous Approaches to Edge Congestion

Many different attempts have been made to address or at least
minimize the problem of edge congestion.

Layout. Manual or automatic graph layout can potentially
minimize edge crossing. In practice, optimal solutions are difficult
to find [Di Battista et al. 1994, Herman 2000, Wills 1999,].

Instead, we can let users interactively move nodes around (to see
how they are connected or to alter the layout). This does not work
well due to the extra work involved, and fails if a node’s position
is important due to its semantic meaning (such as in Figure 1).

Filtering. Filtering relieves congestion by removed ‘unimportant’
edges, thus revealing only the important relationships in the graph
[Consens et la. 1992, Furnas 1986, Mukherjea 1995]. For
example, Figure 3b shows a filtered view of the graph in Figure
3a, where the edges that remain were somehow judged more
relevant than the filtered edges. One problem is that this only
works if we have a way to distinguish ‘important’ from
‘unimportant’ edges. Another problem is that filtering interferes
with context: while we see particular edges, we lose how they
relate with other now invisible edges (Figure 3b). Filtering has
also been used partially to remove the central portions of edges
interactively (Figure 3c). This leaves indications that there was an
edge and shows its direction [Becker et al. 1995], but precise
relationships are now hard to determine because connections are
now left to the ‘minds eye’.

Magnification. Magnification enlarges areas of a graph – either
linearly or non-linearly – so they can be seen in greater detail.
Many approaches now exist: insets [Ware and Lewis 1995],
fisheye views and other distortion based approaches [Furnas 1986,
Lamping et al. 1994, Keahey and Robertson 1996, Leung and
Apperley 1994], Magic Lenses [Bier et al. 1993], and zoomable
user interfaces [Bedersen and Hollan 1994]. The problem is that
enlarging does not necessarily disambiguate edge congestion.

Figure 4: Magnification alone does not help: top left show an
ambiguous node; top right, full zoom; bottom left, an inset;
bottom right, a fisheye.

a b

c d

a b c

Figure 3: Various filtering approaches: from the graph on the
left the centre graph removes several edges and the right most

graph removes the central portion of the edges

 a b c d e f

Figure 2: Ambiguity: the three node graph on the left could
be as it appears or any of the configurations to the right

For example, Figure 4a shows a portion of a graph layout with an
ambiguous node highlighted in green. The magnified inset in 4b
and the full zoom in 4c offer no further clarification. While Figure
4d uses a fisheye distortion to magnify nodes, this actually makes
it harder to tell which edges are incident to the now magnified
green node because it occludes a larger area.

4 The EdgeLens: an Interactive Approach

Our goal is to relieve problems caused by edge congestion. Our
method is to develop the EdgeLens: an interactive technique that
respects the semantics of node layout, disambiguates edge and
node overlapping, and clarifies details about the graph structure.

To explain, we first assume that the locations of the nodes have a
semantic meaning, and consequently nodes should not be moved.
We also assume that the meaning of an edge is in its actual
attachment to nodes: as long as the edge remains visible and
attached to the appropriate nodes its semantics will remain intact.
Given this, the basic idea behind the EdgeLens is to interactively
move edges without detaching them from the nodes, all the while
keeping the nodes stationary. Figure 2b-f showed a simple
example: while the nodes and edge connections are intact, the
lines defining the edges are moved by distorting their shape. In
this manner we hope to disambiguate graph layouts without
changing their meaning.

The EdgeLens borrows from ideas in detail-in-context distortion-
based viewing. It too uses a linear lens with a point focus, and a
limited lens radius that define the range of their effects. It differs
from a detail-in-context lens in that:
• We separate the effects of displacement and magnification, and

use displacement only. This distinction has previously been
mentioned [Leung and Applerley 1994, Keahey and Robertson
1996], and has been applied in 3D access distortion
[Cowperthwaite et al. 1996, Carpendale et al. 1997].

• The detail-in-context distortion is applied only to the edges, and
not to any other part of the graph or underlying image. That is,
the data is divided into two discrete parts, the edges and
everything else. The effects of the distortion field are applied to
the edges only.

We initially developed two types of EdgeLenses using a Bubble
and a Spline approach to distort lines. Both are implemented using
Elastic Presentation Framework (EPF) [Carpendale and
Montagnese 2001].

The Bubble approach: This approach affects the local area only,
as defined by the lens radius. As Figure 5a illustrates, all edges are
provided with bend points and drawn as line segments from bend
point to bend point. The bend points that are within the lens radius
are displaced using a linear lens from EPF and the edge is redrawn
[Carpendale and Xing 2001].

The Spline approach: With this approach, control points are
calculated for all edges that fall within the influence of the lens.
Then the distortion field is applied to these control points and the
control points are used to apply a B-spline to the edge. This
creates a smooth curve that extends from node to node (Figure
5b).

As seen in Figure 5, the algorithmic, visual and interactive effects
of these two approaches are very different. The Bubble approach

only affects a small localized area, while the Spline approach
shifts the edges it touches along their entire length. The
complexity of the Bubble approach is dependent on the number of
edge-bend-points and these in turn control the smoothness of the
curve. The complexity of the Spline approach is dependent on the
spline-control-points. At this point, rather than chose the preferred
interaction based on algorithmic elegance, we ran a user study to
compare these two approaches and to help us select the method
we would develop into the EdgeLens.

5 Comparing the Bubble and Spline Approaches

The Bubble and Spline approaches to the EdgeLens both mitigate
edge congestion problems by revealing nodes and edges that
would otherwise be occluded. We wanted to refine and extend one
of these approaches, but we did not yet know which was better at
managing edge congestion in practice. Consequently, we ran a
controlled user study comparing people’s performance and
preferences when using the Bubble vs Spline approaches to path-
finding within a geographic graph representing airline routes in
Canada (Figure 6). The study and our results are discussed here.

Hypothesis: Because we had no a priori notion as to which lens
would be better overall, we began with a null hypothesis:

There is no difference in people’s performance when using the
Bubble vs. Spline approach to perform path-finding tasks of
varying difficulty in a graph. Performance is measured by the
time (seconds) to find the path, the path quality (incorrect, sub-
optimal, optimal) of the path found, and the participant’s
certainty of correctness that they chose a correct path with a
given lens (using a five point Likert measure anchored at very
uncertain to very certain).

Figure 5a: Bubble approach Figure 5b: Spline approach

Figure 6: The software used in the study

From this hypothesis, independent variables are the Lens Type (2)
X Task Difficulty (4). Dependant variables are time, path quality,
and certainty of correctness. In actuality, we did expect that harder
tasks would take longer to do, but wanted to check that there was
no interaction between Lens Type and Task Difficulty.

Participants. We recruited 16 participants (8 males and 8
females) with formal education in computer science. All were
experienced with both graphs and computers, but had no prior
experience with EdgeLenses

Materials. We created a practice graph, and a main graph that
illustrated airline routes (edges) between major Canada cities
(nodes). City nodes were located at their approximate geographic
position. As visible in Figure 6, the main graph contains several
areas of congestion: the overlapping edges means some edges
occlude one or more others, and some nodes are partially
obscured.

We then created eight route-finding tasks of varying difficulty
around these graphs: easy, medium-easy, medium and hard. There
are two tasks per category. Easy tasks are paths with two
intermediate nodes and do not go through congested areas and
have no overlapping areas. In contrast, hard tasks have 5 or more
intermediate nodes, goes through overlapping edges and
congested areas. Each task used different starting and destination
nodes. Two otherwise identical versions of the software
implemented either the Bubble or Spline approach as just
described. The software would load a graph, and the people could
then explore that graph by moving the particular lens around it
with their cursor. People could also adjust the lens radius through
a graphical slider. The software timed how long it took to do each
task. A post-session questionnaire collected participant’s
preferences between the two lenses as well as their comments.

Design and Method. The experimental design was within-
subjects for both the lens type and task difficulty. Lens type was
counter-balanced ordered to minimize learning effects. That is, we
randomly assigned half the subjects to start with the Bubble
approach, while the other half started with the Spline approach.
The sequence of events is as follows.

1. A participant is seated in a quiet room in front of a computer

that displays the EdgeLens system running a particular lens.
2. The experimenter then explained graph terminology and

concepts (nodes and edges), showed the participant how to
control the lenses with the software, and explained what he or
she had to do in each trial. In particular, participants were asked
to imagine that they were a travel agent, where they were using
this software to look for an optimal airline route from one city
to another, perhaps including stopovers. Optimal routes are
those that pass through the least number of cities possible, and
do not go through a city more than once.

3. The participant then began with a practice session with no
assigned tasks, where he or she interacted with a practice graph
until comfortable with the use of that lens.

4. The participant was then given each task in turn, ordered by
difficulty from easy, to medium-easy, to medium, to hard. For
each task:
• the experimenter coloured the start, end and (optional)

stopover city that comprised the task question, explained
what had to be done, and asked the participant to think aloud
while doing the task;

• the participant clicked a button to start the timing;

• while exploring
the graph with
the lens, the
participant
selected the
desired route
by clicking the
intermediary
nodes (cities);

• the
experimenter
videotaped user
actions, and
wrote down
participant
comments, how
they used the
Edgelens, and the route picked.

• the participant clicked the button to stop timing.
5. Steps 3-4 would be repeated with the other lens. Tasks differed

from set to set, but were equivalent in difficulty.
6. Participants answered the post-session questionnaire.

6 Results

Time. We logged the time required for each task to be completed.
Thus we had 16 data points (one per participant) for each lens at a
particular task difficulty, for a total of 128 data points. Figure 7
plots the means as a graph, where each bar shows the mean time
for each level of task difficulty to be completed using the Bubble
approach and the Spline approach.

We analyzed this data with a two-way Analysis of Variance: Lens
Type (2) X Task Difficulty (4). Results show a main effect for
Lens Type (F=6.22, p = .014) and Task Difficulty (F=14.94, p =
.000), but no interaction (F=.71, p=.54). Thus we reject the null
hypothesis, for we saw that people are faster at completing path-
finding tasks with the Spline vs the Bubble at comparable tasks.
We also saw that overall time increases with both the Bubble and
Spline methods when performing path-finding tasks of varying
difficulty in a graph.

Path quality. All participants produced a path for each trial, for
each lens at a particular task difficulty. A path was graded as
optimal if it passed through the least number of cities (nodes)
possible; sub-optimal if it was correct but passed through more

Figure 7: Participants complete
tasks faster when using the Spline

approach

Figure 8. Spline approach led to fewer incorrect paths and
more optimal paths per task type.

nodes than necessary; and incorrect if the path did not meet the
task specifications. All results are plotted in Figure 8, where each
bar shows the ratio of optimal, sub-optimal, and incorrect paths
for a particular lens and task difficulty.

The graph clearly shows that, in all cases, participants using the
Spline approach had far fewer incorrect paths per task type when
compared to the Bubble approach. Similarly, people produced
more optimal paths with the Spline vs Bubble approach (two-
sample proportion test p<.05). We reject the null hypothesis for
path quality, as people produce more optimal paths and fewer
incorrect paths with the Spline vs the Bubble at comparable tasks.

Certainty of correctness. As part of the post-test questionnaire,
participants were asked: How certain are you with the correctness
of the airline routes you picked and they responded on a 5 point
scale ranging from very uncertain to very certain for both lens
types. Results are plotted in Figure 9. A pairwise T-test shows
this is a statistically significant difference (p<.05). As indicated in
the graph, in almost all cases every participant had a higher
certainty of correctness with the Spline approach. All but two
participants gave it a high score between 4 and 5.

Thus we reject the null hypothesis for certainty of correctness, for
we saw that people have greater certainty that they found a correct
path with the Spline vs the Bubble approach over all tasks.

Participants’ preferences and comments. The post-test
questionnaire asked subjects which Edgelens they preferred, and
to comment on their choice. Every single participant preferred the
Spline over the Bubble approach. Comments were generally
negative about the Bubble approach, and positive about the Spline
approach. Some examples are included here.

• Spline Edgelens
o “Very good looking – appealing.”
o “Works great for identifying if a path exists between two

points.”
o “It actually identifies routes (edges) very well.”

• Bubble Edgelens
o “Edges bend in a weird way.”
o “Awkward & not useful.”
o “Harder to use and the effect is not as clear.”
o “I don’t like this lens at all.”

Summary. In all quantitative and qualitative measures, the Spline
approach outperforms the Bubble approach when people use them
for path-finding tasks of varying difficulty.

7 The EdgeLens: implementation details and

refinements

Because the study results clearly suggest that the Spline approach
is superior, we based our refined implementation of the EdgeLens
on the Spline approach. We also describe how we enhanced its
effect with the selective use of transparency, with colour, by
providing multiple EdgeLenses in a graph.

The Algorithm: An EdgeLens has a centre, a magnitude, and a
radius of influence. User interaction is done by interactively
placing and moving this centre, drawn as a small coloured square
or circle. Moving and adjusting the EdgeLens produces the visible
effect of moving edges. The user can also adjust the magnitude of
the edge displacement through a control such as a slider (e.g., as
in Figure 6). This displacement drops off linearly from the centre
until it reduces to no effect.

Algorithmically, there are four basic steps to create an EdgeLens,
annotated in Figure 10.

Step 1: Decide which edges will be affected by the EdgeLens. If

a perpendicular line can be drawn from an edge in the graph to
the EdgeLens centre and this point is within the EdgeLens’
radius of influence, then that edge will be affected by the
EdgeLens. The point on the edge from which the
perpendicular line can be drawn is the seed control point (ss).
In Figure 10, the edge is affected by e-lens1, but not by e-
lens2.

Step 2: Use the seed control point (sc) to calculate the

displacement. A point-focus linear lens from EPF library
[Carpendale and Montagnese 2001] is used to calculate the
location of the displaced seed control point (dis-sc). The
magnitude of the displacement factor can be set by the user,
and this in turn affects the resulting location of dis-sc. In EPF,
the displacement factor is interpreted as magnification. EPF
calculates the projected height in 3D to achieve this
magnification and then back-projects it. The mathematics of
this calculation is fully explained in [Carpendale and
Montagnese 2001]. For the EdgeLens, we use the back-
projected 2D location to displace the seed control point.

Figure 9: Participants were more certain that their paths
were correct when using the Spline approach

Figure 10: The workings of an EdgeLens

(sc)

(dis-sc)

(c1) (c2)

(n2)
(n1)

Step 3: Calculate the control points for the spline. We use dis-sc to
calculate the two control points c1 and c2 with one on each
side of dis-sc. These three points are lined up on a straight
line, which is parallel to the unadjusted edge (Figure 10). The
actual position of c1 can be calculated based on the formula:
dc = de * r where de is the distance from sc to n1, dc is the
distance from dis-sc to c1, and r is a number between 0 and 1.
Similarly, c2 uses the same formula with the distance from sc
to n2 be de, the distance from dis-sc to c2 be dc. Notice that c1
and c2 will always stay in between n1 and n2.

Step 4: Draw a curved edge with a B-spline. The control points,

n1, c1, c2 and n2 are used to draw a B-spline.

We can change the curvature of curved edges by adjusting the
ratio described in Step 3 of creating an EdgeLens. Doing so, we
move the locations of control points c1 and c2 and thus change
the way edges curve.

When an EdgeLens centre and its seed control point have exactly
the same location, if the calculations were done in 2D, there
would be a problem in deciding which direction to displace the
edge. This is known as the polar problem. The polar problem
arises when, from the perspective of a point in question, all
directions resolve to south (or north as the case may be).
However, since EPF’s calculations [Carpendale and Montagnese
2001] are done in 3D, all initial displacements are calculated as
towards the viewpoint. For the EdgeLens to operate in 2D, we
simply use the back-projection to find the location of the
displaced seed control point, dis-sc. In this way the affected edge
is pushed to the right when it is approached from the left, it
returns through neutral as the EdgeLens passes across it and then
is pushed to the left when the EdgeLens is on the right.

a b c

Figure 11: Applying transparency. a) a graph with
considerable edge crowding; b) an EdgeLens reveals hidden

structure; c) transparency makes this more clear.

Transparency: As a person moves the EdgeLens focal point, the
movement of the affected edges makes the emerging graph
structure quite noticeable. However, when these edges are
stationary, additional visual cues can be helpful in discriminating
between affected edges from unaffected ones. One solution is to
adjust the transparency level of the curved edges. For example,
Figure 11a shows a graph with considerable edge density, and
Figure 11b applies an EdgeLens to this graph to reveal two
previously hidden nodes. Figure 11c adds transparency to the
curved edges, which further clarifies the structure. An additional
advantage of transparency is that users can now see through

clusters of edges, revealing information that would otherwise have
been obscured by solid edges. Figure 12 shows an example, where
the labels Kingston and Toronto are now clearly visible even
though they overlap some of the now-transparent edges.

Excluding Edges: People sometimes want to understand edge
relationships between specific nodes, and consequently they may
want to apply the EdgeLens selectively to move all but the desired
edges to the side. For example, Figure 13a shows a graph where a
person has special interest in the edges connected the 2nd node
down from the top-right; because the EdgeLens moves these
edges aside as well, their connections are hard to see. To solve
this, we let people select particular nodes, which excludes their
attached edges from the effect of the EdgeLens. These nodes and
unaffected edges are coloured to further assist reading the graph
structure. As seen in Figure 13b, the user has selected the (now
red) node, and when the lens is moved near this excluded node, all
connected edges (coloured red as well) are kept straight.

Figure 12: EdgeLens plus transparency reveals labels

Figure 13: The edges of a selected node are excluded from the
EdgeLens effect and coloured red

Multiple Edgelenses: When people are exploring and comparing
different parts of a graph, it would be convenient if there were
more than one EdgeLens available. Our last enhancement supplies
multiple EdgeLenses, where one can position a lens on a section
of a graph and use another lens to examine other areas of the same
graph.

Our algorithm smoothly integrates multiple EdgeLenses. Every
curved edge has two control points, other than those that are
located at the nodes, that are used to determine the way it curves.

The three images in Figure 14 all show an edge under the
influence of two EdgeLenses, where the centre point for one of
the lenses is shown as a red circle and the other as a blue circle.
The control points for this edge, as created by each EdgeLens, are
displayed as triangles, each coloured red and blue to match the
centre point. The green triangles are the control points that are
actually used to displace the edge. They are located by averaging
the x and y locations of control points generated by the two
EdgeLenses. As seen in Figure 14, the visual effect is that the
edge balances its curvature to reflect the interaction between the
two interacting lenses.

Figure 14: The effect of two EdgeLenses on a single edge: left, red
EdgeLens is to the left of the edge and the blue EdgeLens is to the

right – the curvature is lessened; centre, the location of the red and
blue EdgeLenses are balanced and counteract the affect of each other;

right, as the blue EdgeLens moves to the left joining the the red
EdgeLens on the same side the combined effect curves the edge.

In general, the algorithm can be applied to more than one
EdgeLens. As described in Step 3 of EdgeLens algorithm, each
lens determines the positions of two control points with one on
each side of the lens. When there are n EdgeLenses affecting the
edge, the average of x-coordinates of all control points on the
same side of the lens is the resulting x-coordinate of the final
control point on that side. Similarly the y-coordinate of the final
control point is the average of all y-coordinates.

To show how this works on a complex graph, Figure 15 illustrates
with a graph of a portion of the Department of Computing Science
web site at the University of Calgary. Image A is a simple radial
layout; image B shows single EdgeLens revealing some of the
graph structure; image C shows two EdgeLenses revealing detail
in two different areas.

8 Conclusions

The primary contribution in this paper is to describe the
development of the EdgeLens, an interactive solution to that lets
people explore graphs containing considerable edge congestion.

Figure 15: This graph represents a subset of the web pages of the
Department of Computing Science at the University of Calgary.

Image A, is a simple radial layout; image B, shows single EdgeLens
revealing some of the graph structure; image C shows two

EdgeLenses.

A

B

C

The EdgeLens works because it:
 maintains the nodes in original layout,
 interactively moves edges,
 helps to removes ambiguities,
 clarifies graph structure, and
 reveals hidden information underneath the graph structure.

We developed and offered two possible interaction candidates,
Bubble and Spline, and we saw through a user study that the
Spline-based approach was much preferred and significantly
helped participants with their tasks.

Subsequently, we described the EdgeLens algorithm in detail. We
also provided enhancements to its use: transparency, the ability to
exclude and colour selected edges from the EdgeLens effect, and
the ability for people to create multiple EdgeLenses in a single
graph. The EdgeLens effect makes a powerful new tool for
exploring information and relationships in information-dense
graphs.

Acknowledgements
This research was supported in part by Intel Inc. and the National
Science and Engineering Research Council of Canada. The
authors would like to thank the members of ilab, University of
Calgary for ongoing help and support.

References

BECKER, R., EICK, S., AND WILKS, A. 1995. Visualizing

Network Data. In IEEE Transactions on Visualization and
Computer Graphics, vol. 1, No. 1, 16-28.

BEDERSEN, B., AND HOLLAN, J. 1994. Pad++: A Zooming
Graphical Interface for Exploring Alternate Interface Physics.
In Proceedings of ACM UIST’94, ACM Press, 17-26.

BIER, E., STONE, M., PIER, K., BUXTON, W., DEROSE, T.
1993. Toolglass and Magic Lenses: The See-Through Interface.
In Proceedings of ACM SIGGRAPH 1993. 73-80.

CARPENDALE, M.S.T. AND MONTAGNESE, C. 2001. A
framework for unifying presentation space. In Proceedings of
ACM UIST’01, ACM Press. 61-70.

CARPENDALE, M. S. T., COWPERTHWAITE, D. J. AND
FRACCHIA, F. D. 1997. Extending distortion viewing from
2D to 3D. In IEEE Computer Graphics and Applications,
17(4):42–51.

CARPENDALE, M.S.T., AND XING, R. 2001. Examining Edge
Congestion. In Proceedings of ACM CHI'94,. 115-116.

CONSENS, M., CRUZ, I., MENDELZON, A. 1992. Visualizing
queries and querying visualizations. ACM SIGMOD Record,
vol. 21, no. 1, 39-46.

COWPERTHWAITE, D. J., CARPENDALE, M. S. T. AND
FRACCHIA, F. D. 1996. Visual access distortion. In
Conference Companion, ACM CHI'96, ACM Press. 175–176.

DI BATTISTA, G., EADES, P., TAMASSIA, R., AND TOLLIS,
I.G. 1994. Algorithm for Drawing Graphs: an Annotated
Bibliography. Computational Geometry, vol. 4, 235-282.

FURNAS, G. 1986. Generalized Fisheye Views. Human Factors
in Computing Systems, CHI’86 Conference Proceedings, ACM
Press, 16-23.

HERMAN, I., MELANCON, G., AND MARSHALL, M. 2000.
Graph visualization and navigation in information
visualization: A survey. In IEEE Transactions on Visualization
and Computer Graphics, vol 6, no. 1, 24-43.

KEAHEY, T. AND ROBERTSON, E. 1996. Techniques for
nonlinear magnification transformations. In Proceedings of the
IEEE Conference on Information Visualization, IEEE
Computer Society Press, 38–45.

KEAHEY, T. AND ROBERTSON, E. 1997. Nonlinear
magnification fields. In Proceedings of the IEEE Conference on
Information Visualization, IEEE Computer Society Press 51-
58.

LAMPING, J., RAO, R., PIROLLI, P. 1995. A focus and context
technique based on hyperbolic geometry for visualizing large
hierarchies. In Proceedings of the ACM CHI’95, ACM Press,
401–408.

LEUNG, Y. K. and APPERLEY, M. D. 1994. A Review and
Taxonomy of Distortion-Oriented Presentation Techniques.
ACM Transactions on Computer-Human Interaction, vol 1, no.
2, 126-160.

MUKHERJEA, S., FOLEY, J. 1995. Visualizing the world-wide
web with the navigational view builder. Computer Networks
and ISDN Systems, Special Issue on Third International World
Wide Web Conference, vol 27, no. 6, 1075-1087.

PURCHASE, H. 1997. Which aesthetic has the greatest effect on
human understanding? In Symposium on Graph Drawing 97,
vol. 1353 of Lecture Notes in Computer Science. Springer-
Verlag, 248-261.

PURCHASE, H. 2000. Effective information visualization: a
study of graph drawing aesthetics and algorithms. Interacting
with Computers, vol. 13, no. 2, 477-506.

WARE, C. and LEWIS, M. 1995. The DragMag Image Magnifier.
ACM CHI '95 Video Program.

WILLS, G. 1999. NicheWorks – Interactive Visualization of Very
Large Graphs, Journal of Computational and Graphical
Statistics, vol. 8, no. 2, 190-212.

