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Anti-Disassembly using Cryptographic Hash Functions 

Abstract
Computer viruses sometimes employ coding techniques intended to make analysis difficult for anti-
virus researchers; techniques to obscure code to impair static code analysis are called anti-
disassembly techniques. We present a new method of anti-disassembly based on cryptographic hash 
functions which is portable, hard to analyze, and can be used to target particular computers or 
users. Furthermore, the obscured code is not available in any analyzable form, even an encrypted 
form, until it successfully runs. The method's viability has been empirically confirmed. We look at 
possible countermeasures for the basic anti-disassembly scheme, as well as variants scaled to use 
massive computational power. 

Introduction
Computer viruses whose code is designed to impede analysis by anti-virus researchers are referred 
to as armored viruses.1 Armoring can take different forms, depending on the type of analysis being 
evaded: dynamic analysis as the viral code runs, or static analysis of the viral code. In this paper, we 
focus on static analysis. 

Static analysis involves the tried-and-true method of studying the code's disassembled listing. Anti-
disassembly techniques are ones that try to prevent disassembled code from being useful. Code 
using these techniques will be referred to as disassembly-resistant code or simply resistant code.
Although we are only considering anti-disassembly in the context of computer viruses, some of 
these techniques have been in use as early as the 1980s to combat software piracy (Krakowicz, 
c.1983).

Ideally, resistant code will not be present in its final form until run time – what can't be seen can't be 
analyzed. This could involve self-modifying code, which presents problems for static analysis of 
code (Lo, Levitt, & Olsson, 1995). It could also involve dynamic code generation such as a just-in-
time compiler performs (Aycock, 2003). 

In this paper, we present a new method of anti-disassembly based on dynamic code generation, 
which has the following properties: 

It can be targeted, so that the resistant code will only run under specific circumstances. We 
use the current username as a key for our running example, but any value available to the 
resistant code (or combinations thereof) with a large domain is suitable, like a machine's 
domain name. Because this key is derived from the target environment, and is not stored in 
the virus, our method may be thought of as environmental key generation (Riordan & 
Schneier, 1998). 

The dynamically generated code is not available in any form, even an encrypted one, where 
it can be subjected to analysis until the resistant code runs on the targeted machine. Other 
encryption-based anti-disassembly methods require that the resistant code be available in 
encrypted form (e.g., Filiol, 2005), in which case it may be subject to analysis. 

Even if the dynamically generated code were somehow known or guessed, the exact key 

1 The techniques we describe can be used by any malicious software (malware), so we use the term “computer virus” in 
this paper without loss of generality. 
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used by the resistant code is not revealed. 

It does not rely on architecture-specific trickery and is portable to any platform. 

Below, we begin by explaining our anti-disassembly technique and presenting some empirical 
results. We then look at how the technique might be countered, along with some more 
entrepreneurial means of deployment. 

The Idea 
A cryptographic hash function is one that maps each input to a fixed-length output value, such that 
it is not computationally feasible to reverse the process, nor is it easy to locate two inputs with the 
same output (Schneier, 1996). Like regular hash functions, a cryptographic hash function is many-
to-one.

Our idea for anti-disassembly is to combine a key – here, we use the current username for 
concreteness – with a “salt” value, and feed the result as input into a cryptographic hash function. 
The hash function produces a sequence of bytes, from which we extract a subsequence between 
bytes lb and ub, and interpret that subsequence as machine code. We will refer to this subsequence 
as a run. The salt value, for this application, is a sequence of bytes chosen by the virus writer to 
ensure that the desired run appears in the hash function’s output when the correct key is used.

A pseudocode example of this idea is shown below: from a high-level point of view, this is what an 
analyst would be confronted with. The code for a cryptographic hash function is assumed to be 
available, likely in a system library, and run is the code sequence that the virus writer is trying to 
hide. The task of the analyst is to determine precisely what this code does when executed (the value 
of run) and what the target is (the correct value of key).

key  getusername() 
hash  md5(key + salt) 
run  hashlb…ub
goto run 

This pseudocode uses the username as a key, and MD5 as the cryptographic hash function (Rivest, 
1992); + is the concatenation operator. MD5 is now known to be vulnerable to collisions (Wang, 
Feng, Lai, & Yu, 2004), but this is irrelevant to our technique: the analyst does not have the MD5 
hash, and in any case would be interested in the exact value of the key, not just a key which 
produces the same hash. In addition, our anti-disassembly technique can be used with any 
cryptographic hash function, so a different/stronger one can be chosen if necessary. 

There are three issues to consider: 

1. Having the wrong key. Obviously, if the wrong key value is used, then the run is unlikely to 
consist of useful code. The resistant code could simply try to run it anyway, and possibly 
crash; this behavior is not out of the question for viruses. Another approach would catch all 
of the exceptions that might be raised by a bad run, so that an obvious crash is averted. A 
more sophisticated scheme could check the run's validity using a checksum (or re-using the 
cryptographic hash function), but this would give extra information to a code analyst. 

2. Choosing the salt. This is the most critical aspect; we suggest a straightforward brute-force 
search through possible salt values. Normally, conducting a brute-force attack against a 
cryptographic hash function to find a particular hash value, i.e., a collision, would be out of 
the question because the hash functions are designed to make this computationally 
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prohibitive. However, we are only interested in finding a subsequence of bytes in the hash 
value, so our task is easier. An analysis of the expected computational effort required to find 
the required salt is presented in the next section. 

3. Choosing lb and ub. These values are derived directly from the hash value, once the desired 
salt is found. 

The salt search is by far the most time-consuming operation, but this need only be done once, prior 
to the release of the resistant code. The search time can be further reduced in three ways. First, 
faster machines can be used. Second, the search can be easily distributed across multiple machines, 
each machine checking a separate part of the search space. Third, the search can be extended to 
equivalent code sequences, which can either be supplied manually or generated automatically 
(Joshi, Nelson, & Randall, 2002; Massalin, 1987); since multiple patterns can be searched for in 
linear time (Aho & Corasick, 1975), this does not add to the overall time complexity of the salt 
search.

Analysis
In order to find a salt value, we simply compute the cryptographic hash of 

key + salt
for all possible salt values until the hash output contains the required byte sequence (run). In order 
to speed up the search, we allow the run to begin in any position in the hash output. 

Approximately half of the output bits of a cryptographic hash function change with each bit 
changed in the input (Schneier, 1996); effectively, we may consider the hash function's output to 
change randomly as the salt is changed. Given that, the probability of finding a particular b-bit run 
in a fixed position of an n-bit output is the ratio of the bits not in the run to the total number of bits: 
2n-b/2n, or 1/2b. The expected number of attempts would then be 2b-1. Furthermore, because only the 
salt is being changed in the brute-force search, this implies that we would need b-1 bits of salt for a 
b-bit run. 

If we allow lb, the starting position of the run, to vary, the expected number of attempts will be 
reduced by a factor equal to the number of possible values of lb. If we index the starting position at 
the byte level, then there are m = (n-b)/8 possible starting positions. The probability of finding the 
b-bit run increases to m/2b, and the expected number of attempts becomes 2b-1/m. Similarly, if we 
index at the bit level, there are n-b starting positions and the expected number of attempts reduces 
further to 2b-1/(n-b).
Notice that the computational effort depends primarily on the length of the run, not the length of the 
hash function output. The length of the hash function only comes into play in reducing the expected 
number of attempts because the number of possible values for lb, the starting point of the run, 
depends on it. 

We only discuss the case of single runs here, but this technique trivially extends to multiple runs, 
each with their own salt value. Because the salt computation for each run is independent of the 
others, the total effort required for multiple-run salt computation scales linearly. If the 
computational effort to compute the salt for one run is X, then the effort for one hundred runs is 
100X.

As an example of salt computation, suppose we want our run to consist of a single Intel x86 relative 
jump instruction. This instruction can be encoded in five bytes, so we need to find a salt that, when 
concatenated to the key, yields a hash value containing this five-byte run starting in any position. 
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The MD5 hash function has 128-bit outputs, so if we index the run at the byte level, there are 11 
possible values for lb. The expected number of attempts to find the run is therefore 

239 / 11 < 236.

If we instead index at the bit level, there are 88 possible values for lb and the expected number of 
attempts is 

239 / 88 < 233.

Using a 160-bit hash function such as SHA-1 yields 239 / 15 and 239 / 120 when indexing lb at the 
byte and bit levels, respectively. In all cases, the computation can be done in only a few hours on a 
single modern desktop computer. 

It is feasible to use this method to find runs slightly longer than five bytes, but the computational 
effort adds up very quickly. For example, to find an eight-byte run using SHA-1 and indexing lb at 
the bit level would require roughly 263 / 120 > 256 attempts. A special-purpose, massively parallel 
machine would likely be required to find the run in this case, as the computational effort involved is 
roughly equivalent to that required to break the DES block cipher, for which such hardware was 
also required (Electronic Frontier Foundation, 1998). 

Empirical Results 
To demonstrate the feasibility of this anti-disassembly technique, we searched for the run (in base 
16)

e9 74 56 34 12 
These five bytes correspond on the Intel x86 to a relative jump to the address 1234567816, assuming 
the jump instruction starts at address zero. 

Algorithm Key Salt Search Time (s) 

MD5
(128 bits) 

aycock
degraaf
foo
jacobs
ucalgary.ca

Average

55b7d9ea16
a1ddfc1910
e6500e0214
9ac1848109
4d21abe205

39615
47650
60185
28723
18220

44746

SHA-1
(160 bits) 

aycock
degraaf
foo
jacobs
ucalgary.ca

Average

07e9717a09
0d928a260e
2bc680de1e
ca638d5e06

585cc614

36584
55424

120472
24958

325

47552

Table 1: Brute-force salt search for a specific five-byte run 

The search was run on an AMD AthlonXP 2600+ with 1 GB RAM, running Linux 2.6. We tested 
five different keys with one- to five-byte salts, sequentially searching through the possible salt 
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values.2 Table 1 shows the results for two cryptographic hash functions, MD5 and SHA-1. For 
example, the salt “07e9717a09,” when concatenated onto the key “aycock,” yields the SHA-1 hash 
value

ef 6d f4 ed 3b a1 ba 66 27 fe e9 74 56 34 12 a2 d0 4f 48 91 
Numbering the hash value's bytes starting at zero, our target run is present with lb = 10 and ub = 
14.

Another question is whether or not every possible run can be produced. Using the key “aycock,” we 
were able to produce all possible three-byte runs with three bytes of salt, but could only produce 6% 
of four-byte runs with a three-byte salt. With a four-byte salt, we were able to generate four-byte 
runs which covered between 99.999-100% of the possible combinations – this was checked with 
five different keys and three different cryptographic hash functions. (Our test system did not have 
sufficient memory to record coverage data for five-byte runs in a reasonable amount of time.) The 
four-byte run data are shown in Table 2. 

Algorithm Key Runs Found Runs Not Found 

MD5
(128 bits) 

aycock
degraaf
foo
jacobs
ucalgary.ca

Average

4294936915
4294937044
4294936921
4294937188
4294936946

4294937003

30381
30252
30375
30108
30350

30293

SHA-1
(160 bits) 

aycock
degraaf
foo
jacobs
ucalgary.ca

Average

4294966707
4294966733
4294966660
4294966726
4294966769

4294966719

589
563
636
570
527

577

SHA-256
(256 bits) 

aycock
degraaf
foo
jacobs
ucalgary.ca

Average

4294967296
4294967296
4294967296
4294967296
4294967296

4294967296

0
0
0
0
0

0

Table 2: Generation of possible four-byte runs using a four-byte salt 

These results tend to confirm our probability estimate from the last section: b-bit runs need b-1 bits 
of salt. Four-byte runs are of particular interest for portability reasons, because RISC instruction 
sets typically use instructions that are four bytes long; this means that at least one RISC instruction 
can be generated using our technique. One instruction may not seem significant, but it is sufficient 

2 For implementation reasons, we iterated over salt values with their bytes reversed, and didn't permit zero bytes in the 
salts.
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to perform a jump anywhere in the address space, perform an arithmetic or logical operation, or 
load a constant value – potentially critical information that could be denied to an analyst. 

Countermeasures
An analyst who finds some resistant code has several pieces of information immediately available. 
The salt, the values of lb and ub, and the key's domain (although not its value) are not hidden. The 
exact cryptographic hash function used can be assumed to be known to the analyst, too – in fact, 
resistant code could easily use cryptographic hash functions already present on most machines. 

There are two pieces of information denied to an analyst: 

1. The key's value. Unless the key has been chosen from a small domain of values, then this 
information may not be deducible. The result is that an analyst may know that a computer 
virus using this anti-disassembly technique targets someone or something, but would not be 
able to uncover specifics. 

2. The run. If the run is simply being used to obscure the control flow of the resistant code, 
then an analyst may be able to hazard an educated guess about the run's content. Other cases 
would be much more difficult to guess: the run may initialize a decryption key to decrypt a 
larger block of code; the entire run may be a “red herring” and only contain various NOP 
instructions. 

Note that even if the run is somehow known to an analyst, the cryptographic hash function cannot 
be reversed to get the original key; this is a property of the cryptographic hash function (Schneier, 
1996). At best, the analyst could perform their own brute-force search to determine a set of possible 
keys (recall that the hash function is many-to-one). However, the analyst also knows the salt and the 
domain of the key, so given the run, the analyst can find the key by exhaustively testing every 
possible value. This underscores the point that the key domain must be sufficiently large to preclude 
such a brute-force analysis – our example in the last section of using usernames as keys would 
likely not prevent this. 

Whether or not every last detail of the resistant code can be found out is a separate issue from 
whether or not a computer virus using resistant code can be detected. In fact, there is malware 
already that can automatically update itself via the Internet, like Hybris (F-Secure, 2001), so 
complete analysis of all malware is already impossible. 

Fortunately for anti-virus software, computer viruses using the technique we describe would present 
a relatively large profile which could be detected with traditional defenses, including signature-
based methods and heuristics (Szor, 2005). Precise detection does not require full understanding. 

Enter the Botnet 
What if the computing power available for a brute-force salt search were increased by five orders of 
magnitude over the computer we used for our experiments? Few organizations have that much 
computing power at their fingertips, but a few individuals do. A botnet is a network of malware-
controlled, “zombie” machines that executes commands issued via Internet Relay Chat (IRC) 
channels (Cooke, Jahanian, & McPherson, 2005). These have been used for sending spam and 
distributed denial-of-service attacks (Cooke et al., 2005), but they may also be viewed as very large-
scale distributed computing frameworks which can be used for malicious purposes. 

If a virus writer wants to armor a virus using the anti-disassembly technique described here, 
especially for long runs with many instructions, a botnet may be used for salt computation. A naïve 
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salt computation on a botnet would involve partitioning the salt search space between machines, 
and the key and desired run would be available to each machine. Using the earlier Intel x86 relative 
jump example, for instance, four zombie machines in a botnet could each be given the desired key 
(e.g., ``aycock’’) and run (e974563412) and a four-byte salt search could be divided like so: 

Zombie 1 00000000…3fffffff

Zombie 2 40000000…7fffffff

Zombie 3 80000000…bfffffff

Zombie 4 c0000000…ffffffff 

Having the virus writer’s desired key and run on each zombie machine would not be a bad thing 
from an analyst's point of view, because locating any machine in the botnet would reveal all the 
information needed for analysis. 

A more sophisticated botnet search would do three things: 

1. Obscure the key. A new key, key´, could be used, where key´ is the cryptographic hash of 
the original key. The deployed resistant code would obviously need to use key´ too. 

2. Supply disinformation. The virus writer may choose lb and ub to be larger than necessary, to 
mislead an analyst. Unneeded bytes in the run could be NOP instructions, or random bytes if 
the code is unreachable. 

3. Hide the discovery of the desired run. Instead of looking for the exact run, the botnet could 
simply be used to narrow the search space. A weak checksum could be computed for all
sequences of the desired length in the hash function's output, and the associated salts 
forwarded to the virus writer for verification if some criterion is met. For example, the 
discovery of our five-byte run in the “Empirical Results” section could be obliquely noted 
by watching for five-byte sequences whose sum is 505. 

This leaves open two countermeasures to an analyst. First, record the key´ value in an observed 
botnet in case the salt is collected later, after the virus writer computes and deploys it – this would 
reveal the run, but not the original key. Second, the analyst could subvert the botnet, and flood the 
virus writer with false matches to verify. The latter countermeasure could itself be countered 
quickly by the virus writer, however, by verifying the weak checksum or filtering out duplicate 
submissions; in any case, verification is a cheap operation for the virus writer. 

Related Work and Conclusion 
There are few examples of strong cryptographic methods being used for computer viruses – this is 
probably a good thing. Young and Yung (1996) discuss cryptoviruses, which use strong 
cryptography in a virus' payload for extortion purposes. Riordan and Schneier (1998) mention the 
possibility of targeting computer viruses, as does Filiol (2005). 

Filiol’s work is most related to ours: it uses environmental key generation to decrypt viral code 
which is strongly-encrypted. Neither his technique nor ours stores a decryption key in the virus, 
instead finding the key on the infected machine. A virus like the one Filiol proposes hides its code 
with strong encryption, carrying the encrypted code around with the virus. In our case, however, the 
code run never exists in an encrypted form; it is simply an interpretation of a cryptographic hash 
function's output. Our technique is different in the sense that the ciphertext is not available for 
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analysis. 

The dearth of strong cryptography in computer viruses is unlikely to last forever, and preparing for 
such threats is a prudent precaution. In this particular case of anti-disassembly, traditional defenses 
will still hold in terms of detection, but full analysis of computer viruses may be a luxury of the 
past. For more sophisticated virus writers employing botnets to find salt values and longer runs, 
proactive intelligence gathering is the recommended defense strategy. 
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