
A Lightweight Drive-by Download Simulator

Matthew McDonald James Ong John Aycock∗ Heather Crawford
Department of Computer Science

University of Calgary
2500 University Drive NW

Calgary, Alberta, Canada T2N 1N4

Nathan Friess†

Lyryx Learning, Inc.
210 - 1422 Kensington Road NW

Calgary, Alberta, Canada T2N 3P9

Abstract

Teaching students about practical security can be a challenge in laboratories
that are, by necessity, isolated from the Internet. We describe some preliminary
work to address this problem for the topic of drive-by downloads. A previous
system, the Spamulator, allowed students’ real, non-contrived code to interact
with a simulation of the Internet, simulating up to a million domains on a sin-
gle machine. We extend the Spamulator to allow arbitrary drive-by downloads in
a lightweight fashion, using a hybrid simulation technique to capture both local
effects and global spread.

1 Introduction
Education is unquestionably a defense against some security threats. Use of the term
“education” usually refers to user education, but it is equally important to consider
the education of the next generation of defenders: computer science and engineering
students.

A practical education of these students demands that they have hands-on experi-
ence with current forms of malware. (We leave this assertion general: the debate about
whether students should work with existing malware or create their own malware is
outside the scope of this paper.) For safety reasons, student experiments with malware
should be conducted in an isolated laboratory environment with no access to the In-
ternet or even the intranet outside the laboratory. This means that there is not a ready
pool of willing victims and machines available to students. At the same time, many
∗Corresponding author; email aycock@ucalgary.ca.
†Work done while at the University of Calgary.

1



current threats are large-scale and global in scope, like botnets. How can students be
given effective, hands-on training with these threats within the confines of a secure
laboratory?

The preliminary work described in this paper begins to address this problem. Build-
ing on a successful previous system, the Spamulator, we describe the system we have
built to help teach students about drive-by downloads. Our system allows the students
to write real drive-by download code, and uses a hybrid simulation technique that com-
bines the effects of running the students’ code with a global simulator that provides an
Internet’s worth of victims, all within the safety of the laboratory.

We begin with a discussion of related work in the next section. Section 3 describes
the Spamulator. This is followed by details of our drive-by download simulation and
the global simulator in Sections 4 and 5, respectively. Finally, we end with our conclu-
sion and future work in Section 6.

2 Related Work
Gordon [10] makes a distinction between simulators for education and simulators for
anti-virus testing, although the education referred to is clearly user education rather
than the student audience our system is targeting. This distinction is echoed by Leszczyna
et al. [12], whose MAlSim system is a Java-based multi-agent sytem rather than one
that runs real code.

Liljenstam et al. [13] suggest modeling worm activity with a mixture of models,
which from a very high level is similar to our hybrid approach. However, they are
linking different models rather than real code execution and simulation. Weaver et al.
take a different tack, trying to scale down the size of the Internet while still maintaining
accuracy [20].

There are a number of examples of systems for sandboxing and scalable simula-
tions. All of these are heavyweight and resource-hungry when compared to our system,
though. For example, Ford and Cox [9] describe the Vx32 sandboxing system, com-
plete with dynamic translation of code, making it anything but lightweight. Brumley
et al. run code in a fully-emulated environment [6]. Potemkin’s honeyfarm uses virtual
machines on ten servers [19], and the Botnet Evaluation Environment uses over 100
PCs [5], orders of magnitude more computing power than our system needs. Aycock et
al. [4] compares the Spamulator to various other system, including the Honeyd system
that the related work by Filiol et al. [8] is based on.

General automatic detection of malware is of course within the purview of anti-
virus software, and large portions of books have been written on the topic (e.g., [1, 17]).
More specific analyses have been applied to detect things like time-based triggers [7]
and spyware [11]. SpyProxy [14] captures a superset of what our exploit verifier can
detect (or, for that matter, needs to detect) and is probably the closest work to ours.

2



3 Spamulator
We had previously developed a system called the Spamulator for use in a university
course on spam and spyware [2]. The Spamulator and its applications in anti-spam
research have been described elsewhere [4, 15], but we include a brief overview here
for completeness before explaining how we have extended it to the harder problem of
drive-by downloads.

The primary problem the Spamulator was meant to solve was the fact that there
were few people to spam in an isolated security laboratory. The Spamulator simulates
up to a million domains’ worth of machines (i.e., potentially multiple machines per
domain) on a single computer, effectively giving each student their own copy of the
Internet. HTTP servers serve out web page hierarchies for each domain, where the
web pages contain email addresses that may be harvested. A search engine and web
directory, modeled after Google and Yahoo! Directory respectively, provide starting
points for harvesting. SMTP servers and open proxies exist for sending spam to the
harvested addresses.

From the students’ point of view, they are simply interacting with the Internet.
They can use unaltered Internet applications like Firefox to surf the simulated web
pages, and they simply write normal networking code to interact with their copy of the
Internet. There are no contrived limitations on their code, no special libraries to link, no
restrictions on what programming language they can use. The simulation is complete
enough that we have been able to run real bulk-mailing and address harvesting software
successfully within the Spamulator.

The Spamulator accomplishes its task by selectively redirecting and rewriting TCP
network packets. One or more ranges of IP addresses are flagged (using iptables
and libipq on Linux, and ipfw and divert sockets on Mac OS X and FreeBSD; the
latter version will be described here), and any packets destined for those IP addresses
are sent instead to the Network Rerouting Daemon, or NeRD. NeRD will start a simu-
lated server process for each new connection, rewriting the packets to reflect the actual
destination IP and port number, once known; further packets belonging to the same
connection are rewritten similarly. Return packet traffic is identified by a sentinel IP
address (127.0.0.2) and those packets are also rewritten by NeRD.

Using the abstracted TCP packet shown in Figure 1, we illustrate this process in
Figure 2 with an example of a new connection:

Figure 2a. The simulated IP range in this example is 10.0.0.0/8. A packet destined
for the IP address 10.0.0.1 is thus redirected to NeRD. The packet’s SYN bit
indicates whether or not it is a new connection; it would be set for this example.

Figure 2b. NeRD starts a simulated server process to handle the new connection. A
pipe remains open between NeRD and the simulated server for communications.

Figure 2c. The simulated server listens for new connections.

Figure 2d. NeRD receives the port number from the simulated server along the pipe,
indicating what port the simulated server is listening at.

3



NeRD operation

136.159.7.150 12345

10.0.0.1 25

Data

Source
IP

Destination

 IP

Source

port

Destination
port

Figure 1: Abstracted TCP packet, sent from port 12345 on 136.159.7.150 to the
SMTP port (port 25) on 10.0.0.1

Figure 2e. NeRD notes the information for future packets and rewrites the initial
packet accordingly, readdressing it to localhost (127.0.0.1), port 2112. The
source IP address is changed to the sentinel address 127.0.0.2. Finally, NeRD
reinjects the packet and the kernel sends it to the listening simulated server pro-
cess.

Subsequent packets from 136.159.7.150:12345 to 10.0.0.1:25 are rewritten
similarly, but there is no need to start the simulated server anew. Return packets are
rewritten as shown in Figure 3.

4 Drive-by Download Simulation
After its successful use in teaching spam and spyware, adapting the Spamulator for
use with arbitrary malware was the obvious next step. Ideally, we would like to allow
large-scale experimentation with computer worms in a safe environment. However,
this was a much more challenging problem.

Recall that the Spamulator’s primary use was address harvesting and spamming.
It was also used for a spyware scenario, where a browser helper object steals online
banking login information and posts it to a drop site. In both these applications, the
students’ code interacted with (simulated) network servers in a well-defined manner
using established network protocols. At no time was the students’ code running on the
simulated servers.

In contrast, computer worms would require arbitrary code to run on the simulated
machines, and on a large scale. Whether and how the worm propagates depends on
the execution of the code. This negates the key elements of the Spamulator: that it be
lightweight and run on a single computer. We cannot simply start up tens of thousands
of virtual machines on a laptop, for instance.

Instead we turned our attention to arbitrary code that has a known spread and a
known infection vector, drive-by downloads. The conceptual model we considered is

4



136.159.7.150 12345

10.0.0.1 25

Network Rerouting

Daemon (NeRD)

136.159.7.150 12345

10.0.0.1 25

Network Rerouting

Daemon (NeRD)

Simulated

server

process

(a) (b)

136.159.7.150 12345

10.0.0.1 25

Network Rerouting

Daemon (NeRD)

Simulated

server

process

136.159.7.150 12345

10.0.0.1 25

Network Rerouting

Daemon (NeRD)

Simulated

server

process

2112

(c) (d)

136.159.7.150 12345

10.0.0.1 25 Network Rerouting
Daemon (NeRD)

Simulated
server

process

127.0.0.2 12345

127.0.0.1 2112

(e)

Figure 2: Packet rewriting for new connection

5



127.0.0.1 2112

127.0.0.2 12345 Network Rerouting
Daemon (NeRD)

Simulated
server

process

10.0.0.1 25

136.159.7.150 12345

Figure 3: Return packet traffic rewriting

Mother ship
Proxies

New
drive-by

download

Drive-by
download

distribution

Figure 4: Drive-by download model

6



Spamulator

New
drive-by
download

Simulated

FTP

server

Redirected
connection

Exploit

verifier

Student/

adversary

Global

simulator

Valid
exploit
message

Figure 5: Drive-by download model, as implemented in the Spamulator

shown in Figure 4. An adversary has an established architecture for distribution of
drive-by downloads, with a “mother ship” containing the exploit du jour, served out
via proxies on compromised machines. A new drive-by download is uploaded to the
mother ship by the adversary, then infects victims over time through proxies.

In our Spamulator implementation of this conceptual model (Figure 5), the student
plays the role of the adversary. They develop a drive-by download exploit for Firefox,
and infect victims in the following way:

1. The student/adversary uploads their drive-by download to the mother ship via
FTP. The mother ship is actually a simulated FTP server.

2. The mother ship invokes a program, the exploit verifier, to automatically verify
that the purported drive-by download is in fact a bona fide exploit. The exploit
verifier is discussed in detail below. Because our lab has a physical limit on
the number of users, as discussed in Section 5, one could argue that there are
few enough exploits that they could be manually verified. However, automatic
verification keeps a human out of the loop so that our system can run constantly
and scale as necessary.

3. If the exploit is verified, the verifier sends a message to that effect to the global
simulator.

4. The global simulator simulates the spread of the drive-by download to victims
worldwide. The global simulator is the topic of the next section.

The conceptual model is thus implemented with a hybrid simulation technique, using
both real code execution (during exploit verification) and traditional simulation (in the

7



<validcalls>

<syscall>

<name>read</name>

<invalidatt>

<att>42</att>

</invalidatt>

</syscall>

</validcalls>

def verifySyscall(sys_call, params):

if sys_call == ’read’:

if params[0] == ’42’:

return False

return True

(a) (b)

Figure 6: XML description file and generated (pseudo)code

global simulator). The Spamulator allows FTP connections to the mother ship and
HTTP connections from a victim’s browser to be redirected appropriately.

Technically, the simulated FTP server is a skeletal implementation that supports the
put and quit commands, which is sufficient for the mother ship. The exploit verifier
is the more comparatively sophisticated part of our system.

4.1 Exploit Verifier
The exploit verifier’s design has arisen in the process of addressing three practical
engineering constraints. First, we only need to run a single process – Firefox – to
verify the exploit; a full operating system emulation would be overkill and involve
too much overhead. Second, we wanted a lightweight solution that would not involve
massive amounts of code. Third, the exploit verifier needed to be low maintenance and
not require delicate changes to some third-party emulator that would need to be redone
whenever a new version of the emulator appeared.

The only existing package we found that had the ability to run single processes was
QEMU. However, this ability is currently restricted to Linux and Mac OS X [16], and
our system had to run on FreeBSD due to laboratory constraints. Furthermore, having
to modify the third-party QEMU software would violate our third design constraint,
maintenance.

Because we are interested in whether or not the exploit actually runs, we are con-
cerned with the dynamic behavior of Firefox. For this reason, we have chosen an
appropriate lightweight mechanism: the exploit verifier monitors the execution of Fire-
fox by tracing the system calls that Firefox makes; this can be done in user mode with
the ptrace system call. Any appearance of a “bad” behavior from the exploit causes
the exploit verifier to halt Firefox and signal to the global simulator that the exploit is
valid. (Thinking in terms of “good” and “bad” behaviors is intuitively appealing, but
somewhat misleading, as the exploit verifier is really just looking for specified behav-
iors.)

Behaviors to watch for are specified using an XML description file that lists system
calls and their arguments; combinations of the two are flagged as either valid or invalid.
The XML descriptions are used to generate code that performs the matching against
the system call traces, allowing us to gradually improve the matching and its speed

8



over time. Figure 6a gives a simple XML description that disallows the read system
call with a first argument of 42, and the corresponding generated code is in Figure 6b.
(We have shown pseudocode for clarity.) Wildcards and negation can also be specified
in the XML descriptions.

In addition to being able to look for specific system calls as Firefox executes, the
exploit verifier is also able to monitor system call frequency and memory usage for
anomalous activity. Despite this, the exploit verifier is the part of the system that could
benefit the most from enhancement. Some obvious extensions would allow specifi-
cation of sequences of system calls, and to skip the system calls at startup that occur
before an exploit could possibly affect Firefox – we conjecture that this latter extension
will reduce the risk of false positives.

Another option available to us, being a tool for teaching, is to steer students in a
direction that is pedagocially acceptable in that it teaches students the right concepts,
but is easier to detect by the exploit verifier. For example, we could deliberately add
an exploitable bug into Firefox, and monitor for activity at that address only. A related
idea is to monitor for a specific class of attacks, like checking the address of the system
call to see if it is located in the stack, and direct students to mount a stack-smashing
attack for their drive-by download. A less desirable alternative would be to supply the
students with partial code containing a system call that would act as a sentinel to the
exploit verifier, but this option would be both contrived and limiting. Letting shellcode
progress far enough to produce some externally-visible effect, like connecting to a
well-known IP address and port, is another option.

Regardless of the method used by the exploit verifier, however, it passes on a mes-
sage to the global simulator once a valid exploit has been detected.

5 Global Simulator and Visualization
The global simulator simulates the worldwide effect of a new drive-by download be-
ing distributed from the mother ship through proxies on compromised machines, as it
infects new victims’ machines. A related component, the visualizer, displays the ongo-
ing simulation to give students feedback about their drive-by download. In theory the
global simulator and the visualizer could run on each student’s machine, but by moving
them onto a different physical machine we can show all students’ aggregate activity in
the laboratory on a common display.

As mentioned, the global simulator receives messages from the exploit verifier.
These messages signal the upload of a new drive-by download, and also contain the
username to whom the drive-by download should be attributed. We assume that each
user has at most one drive-by download active at any given time, and that there are a
maximum of eight users. This latter constraint is due to the fact that our physical lab-
oratory has eight computers for students [3], but this limit turns out to be very helpful
for visualization as we describe below.

The simulator has a fixed set of proxies (currently three), and a larger fixed set
of 126 cities where infections may occur. Each city is mapped into its world map
coordinates, and also its time zone. Because the drive-by download infections are
the result of human activity, and human activity tends to be greater during daylight

9



Mother ship

Legend

Status line

Proxies

New infections

Adversary

Color bar

Figure 7: Visualizer screenshot

hours, we simulate the effect of the diurnal cycle. The global simulator biases the
number of new infections such that cities whose time zones are in daylight have more
infections. Other elements of the simulation, like the number of new infections per
time step, are driven by a pseudorandom number generator operating within various
tunable parameters.

The visualizer (Figure 7) displays the global simulator’s activity on a Mercator pro-
jection [18] of the world. Daylight is shown using two indicators that move right to left
appropriately as daylight cycles around the globe. First, a shaded, semi-transparent
area darkens nighttime areas. Second, color bars across the top and bottom show gra-
dations of light with different shades of yellow and blue: yellow for daytime (7am to
6pm) with lighter shades being closer to noon, and blue for nighttime (7pm to 10pm
and 3am to 6am) with darker shades closer to midnight. Black bars are used between
11pm to 2am. The linear daylight pattern is an approximation of actual daylight, of
course, but it is sufficient for our simulation’s purposes.

The display continually shows the mother ship (located in Calgary) and the proxies.
Students who have an active drive-by download are shown in a fixed location; because
there are at most eight of them, they are each assigned a distinct color that is shown
in the legend at the lower left of the display. Infections from a particular drive-by
download are shown using the corresponding color, which significantly reduces the

10



clutter from labels. New infections are temporarily labeled with the city name and (in
parentheses) the proxy through which they became infected. Finally, a status line at the
bottom gives details of the last simulation event.

6 Conclusion and Future Work
While our system needs to be refined slightly before a full deployment in the laboratory,
our preliminary running system suggests that it is possible to field a training tool that
allows students to use real drive-by download code and see a global impact, all from
within the safety of a secure laboratory environment.

We are currently looking at making the exploit verifier more powerful in terms of its
ability to detect exploits automatically, while still retaining its lightweight aspect. We
are also considering a number of ways to extend the Spamulator for both teaching and
research. Botnets are an obvious extension, as are certain web-based attacks like cross-
site scripting exploits. Finally, we continue to pursue the Holy Grail of single-machine
simulation: large-scale computer worm spread using real code.

Acknowledgment
Some of the authors were supported in part by grants from the Natural Sciences and
Engineering Research Council of Canada. This work was supported in part by NSERC
ISSNet, the Internetworked Systems Security Network.

References
[1] J. Aycock. Computer Viruses and Malware. Springer, 2006.

[2] J. Aycock. Teaching spam and spyware at the University of C@1g4ry. In Third
Conference on Email and Anti-Spam, pages 137–141, 2006. Short paper.

[3] J. Aycock and K. Barker. Creating a secure computer virus laboratory. In 13th
Annual EICAR Conference, 2004. 13pp.

[4] J. Aycock, H. Crawford, and R. deGraaf. Spamulator: The Internet on a lap-
top. In 13th Annual ACM SIGCSE Conference on Innovation and Technology in
Computer Science Education, pages 142–147, 2008.

[5] P. Barford and M. Blodgett. Toward botnet mesocosms. In First Workshop on
Hot Topics in Understanding Botnets (HotBots), 2007.

[6] D. Brumley, J. Newsome, and D. Song. Sting: An End-to-End Self-Healing Sys-
tem for Defending against Internet Worms, chapter 7, pages 147–170. 2007.

[7] J. R. Crandall, G. Wassermann, D. A. S. de Oliveira, Z. Su, S. F. Wu, and F. T.
Chong. Temporal search: Detecting hidden malware timebombs with virtual ma-
chines. In Proceedings of the 12th International Conference on Architectural

11



Support for Programming Languages and Operating Systems (ASPLOS), pages
25–36, 2006.

[8] E. Filiol, E. Franc, A. Gubbioli, B. Moquet, and G. Roblot. Combinatorial op-
timisation of worm propagation on an unknown network. Proceedings of World
Academy of Science, Engineering and Technology, 23:373–379, 2007.

[9] B. Ford and R. Cox. Vx32: Lightweight user-level sandboxing on the x86. In
USENIX Annual Technical Conference, pages 293–306, 2008.

[10] S. Gordon. Are good virus simulators still a bad idea? Network Security, pages
7–13, Sept. 1996.

[11] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. A. Kemmerer. Behavior-based
spyware detection. In 15th USENIX Security Symposium, pages 273–288, 2006.

[12] R. Leszczyna, I. N. Fovino, and M. Masera. Simulating malware with MAlSim.
Journal in Computer Virology. To appear; was in EICAR 2008.

[13] M. Liljenstam, Y. Yuan, B. J. Premore, and D. Nicol. A mixed abstraction level
simulation model of large-scale Internet worm infestations. In Proceedings of the
10th IEEE International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunications Systems (MASCOTS), pages 109–116, 2002.

[14] A. Moshchuk, T. Bragin, D. Deville, S. D. Gribble, and H. M. Levy. SpyProxy:
Execution-based detection of malicious web content. In 16th USENIX Security
Symposium, pages 27–42, 2007.

[15] M. Nielsen, D. Bertram, S. Pun, J. Aycock, and N. Friess. Global-scale anti-spam
testing in your own back yard. In Fifth Conference on Email and Anti-Spam,
2008. 8pp.

[16] QEMU. QEMU emulator user documentation. http://bellard.org/qemu/qemu-
doc.html. Last retrieved 17 December 2008.

[17] P. Szor. The Art of Computer Virus Research and Defense. Addison-Wesley,
2005.

[18] United States Geological Survey. Map projections – a working manual. U.S.
Geological Survey Professional Paper 1395, 1987.

[19] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. C. Snoeren, G. M.
Voelker, and S. Savage. Scalability, fidelity, and containment in the Potemkin
virtual honeyfarm. In Proceedings of the 20th ACM Symposium on Operating
Systems Principles (SOSP), pages 148–162, 2005.

[20] N. Weaver, I. Hamadeh, G. Kesidis, and V. Paxson. Preliminary results using
scale-down to explore worm dynamics. In Proceedings of the 2004 ACM Work-
shop on Rapid Malcode (WORM), pages 65–72, 2004.

12


