
Converting Python Virtual Machine Code to C

John Aycock

Department of Computer Science

University of Victoria

Victoria, B.C., Canada

aycock@csc.uvic.ca

Abstract

The optimization of a Python program has a limit
point, beyond which a programmer must resort to C
code in order to get more speed. Not all program-
mers are willing or able to take this step. 211 is
an experimental program which automatically con-
verts Python virtual machine code into C. In this
paper I discuss 211, its results, and suggest changes
to Python’s internals which should yield better re-
sults and faster programs.

1 Introduction

My first nontrivial Python program was a 1400-line
program that built and manipulated large graphs.
While I found Python made for very fast devel-
opment, the result was somewhat disappointing —
medium-sized inputs could take days to run, making
large inputs out of the question.
I applied the usual optimization techniques [3].

Using Python’s profiler, I was able to identify
“hot spots” in the program where the majority of
time was being spent; changing that code to use
more efficient data structures and cache previously-
computed information sped the program up substan-
tially. Manually performing transformations such
as moving invariant code out of loops helped to a
lesser degree. The result of this optimization was
a Python program which now took several hours for
inputs which previously took it several days. A good
improvement, but still not fast enough.
At this point, I hit an optimization barrier. The

usual Python lore dictated that I should recode the
hot spots into C, something time constraints pre-
vented. In addition, I wanted to avoid the main-
tenance and portability issues presented by hybrid
source code. What I wanted was a tool to automat-
ically convert my most frequently-executed bits of
Python code into C.

Python Code
(.py file)

Python
Compiler

PVM Code
(.pyc file)

Python
VM

Figure 1: Execution of Python programs.

Internally, Python does not directly interpret
Python programs. Instead, it has a compiler which
translates Python programs into code for an ideal-
ized abstract computer — the Python Virtual Ma-
chine (PVM). The Python interpreter then executes
the PVM code (Figure 1). The PVM itself is a “stack
machine,” meaning that PVM instructions get their
arguments from the stack, and place their results
onto the stack.

Virtual and stack machines are not new. The idea
is decades-old, but went out of vogue in the late
1970’s [12]. It has enjoyed a renaissance lately with
the advent of Java, which uses a virtual machine.

The good news is that there is a wealth of re-
search available which addresses the efficient execu-
tion of these machines. In particular, work has been
done speeding up Forth [8, 7], Smalltalk [17, 4], and
of course Java [16]. They have had great success
in making faster language implementations, and a



.pyc File

211

Rewritten
.pyc File

C Code

Figure 2: A model of 211.

lot of this material can be applied to speeding up
Python.

The remainder of this paper is divided into two
parts. Section 2 describes my work on 211, an ex-
perimental program which converts PVM code into
C. In Section 3 I suggest some changes to the inner
workings of Python which I argue will make it more
amenable to optimization and high-speed implemen-
tations.

2 The 211 Program

My 211 program was inspired by the Toba program
for Java, whose authors bill it as a “way-ahead-of-
time compiler” [16]. The idea is that a Python ap-
plication is profiled, and has the PVM code for its
hot spots converted into C code by 211. The Python
interpreter is recompiled with 211’s C code output,
producing a customized Python interpreter that can
be used by the Python application (Figure 2).

Because it works at the PVM level, 211 is able to
co-exist with any high-level PVM optimizers. This
includes PVM optimizers that add new opcodes —
211 only converts PVM opcodes that it has been
taught, so PVM code output by 211 can be a mix-
ture of normal VM instructions and calls to special-
ized C code.

Only one line needs to be added to the Python in-
terpreter code to make 211 work: a #include state-
ment to include 211’s C code output.

211 itself consists of 1320 lines of Python code,
about 635 lines of which are bits of Python’s inter-
preter code which 211 uses for its conversion. The
program is based on Python 1.5.1.

To understand how I convert PVM to C code, it
is useful to first look at the Python interpreter.

2.1 The Python Interpreter

The Python interpreter is what is sometimes called a
“classical” interpreter [10]. Its algorithm is straight-
forward:

1. Fetch the opcode of a VM instruction, and its
arguments (if any).

2. Execute the instruction.

3. Repeat steps 1 and 2 until the novelty wears off.

This algorithm is implemented in the Python in-
terpreter by C code like that shown below (greatly
simplified from the original).

while (1) {

opcode = NEXTOP();

if (HAS_ARG(opcode))

oparg = NEXTARG();

switch (opcode) {

...

}

}

The cases in the switch statement implement the
various VM instructions. As discussed in the next
section, 211 specializes the Python interpreter by
adding code into this switch statement.

2.2 What 211 Does

211 has four basic steps.

1. Read in a .pyc file and extract the PVM code.

2. Break the PVM code into extended basic
blocks. An extended basic block (EBB) is the
longest sequence of instructions for which there
is only one entry point (there may be multiple
exits from an EBB, though) [13]. The hypo-
thetical code in Figure 3 contains two EBBs.

Why use EBBs? The Python interpreter code
expects branch targets to be expressed as offsets
into PVM code. Rather than modify the inter-
preter extensively, I opted to use EBBs, which
ensures that all branch targets correspond to
PVM code and not C code.

3. Convert PVM instructions within each EBB
into C code, effectively creating a new PVM op-
code for each EBB. 211’s conversion is a matter
of pasting together code from the Python in-
terpreter’s main switch statement. For exam-
ple, an EBB containing three PVM instructions
would be converted into



L1: A
B
GOTO L1
C
GOTO L2
D

L2: E

Figure 3: Extended basic blocks.

code for instruction #1
code for instruction #2
code for instruction #3

For the most part, the code from the Python
interpreter is used with very little modification.
In a few important cases, however, 211 will cus-
tomize the C code to produce better output. In
effect, 211 performs a limited amount of partial
evaluation [9]. One example is the conversion
of branches in the PVM code to goto state-
ments wherever possible. Another example in-
volves the PVM comparison instruction — usu-
ally, the Python interpreter decides at run-time
what type of comparison (e.g., <, >=) to per-
form, but 211 can determine this at compile
time.

4. Rewrite the PVM code in the .pyc file so that
it uses the new opcodes.

Consider the function below. Obviously this is a
contrived example, but it nicely illustrates the oper-
ation of 211.

def foo():

pass

The PVM code for this function is shown below, as
disassembled by dis.dis(foo). (Recall that func-
tions without an explicit return statement return
the value None.)

0 SET_LINENO 1

3 SET_LINENO 2

6 LOAD_CONST 0 (None)

9 RETURN_VALUE

When executed by the PVM, the first two PVM
instructions store the source line number from the
original Python code, for use in tracebacks. The
third instruction pushes the function’s zeroth con-
stant, None, onto the PVM’s stack. Finally, the

fourth instruction pops the value off the top of the
stack and returns.
Inside the Python interpreter, this would be im-

plemented by the code:

while (1) {

opcode = NEXTOP();

if (HAS_ARG(opcode))

oparg = NEXTARG();

switch (opcode) {

...

case RETURN_VALUE:

retval = POP();

why = WHY_RETURN;

break;

case LOAD_CONST:

x = GETCONST(oparg);

Py_INCREF(x);

PUSH(x);

break;

case SET_LINENO:

f->f_lineno = oparg;

break;

...

}

}

My 211 program takes all four PVM instruc-
tions and rewrites them into the single instruction
211_OPCODE 0. It then outputs the C code below,
which is #included into the Python interpreter’s
main switch statement.

case 211:

switch (oparg) {

case 0:

f->f_lineno = 1;

f->f_lineno = 2;

x = GETCONST(0);

Py_INCREF(x);

PUSH(x);

retval = POP();

why = WHY_RETURN;

break;

}

break;

211 then goes through the C code it outputs, and
performs “peephole optimization” — in other words,
it searches for inefficient or redundant code and re-
places it with improved code [1]. This does not imply



that the Python interpreter’s code was inefficient or
redundant to begin with; this effect is caused solely
by 211 piecing together chunks of the interpreter’s
code in new ways. The resulting C code is shown
below.

case 211:

switch (oparg) {

case 0:

f->f_lineno = 2;

x = GETCONST(0);

Py_INCREF(x);

retval = x;

why = WHY_RETURN;

break;

}

break;

In this example, 211’s peephole optimizer was
able to remove the adjacent PUSH/POP operations,
and delete the unnecessary assignment to f lineno.
These patterns are detected in the C code by some
simple regular expressions.
The Python interpreter is recompiled next, incor-

porating 211’s C code output. The rewritten (single-
instruction) PVM code for foo() can now be run,
and it will use the new customized interpreter code.

2.3 What 211 Doesn’t Do

When a series of PVM instructions has been replaced
with 211’s specialized C code, the interpreter loop
is not executed by the C code unless necessary. The
speed increase that 211 gets is in part due to avoid-
ing this loop overhead.
Unfortunately, the Python interpreter loop con-

tains code to deal with periodic tasks, such as check-
ing for signals1 and changing thread states. By exe-
cuting the interpreter loop less frequently, programs
converted to C using 211 will be less responsive to
these events.
Another thing to note is that 211 only addresses

one area of Python performance. If a Python pro-
gram spends most of its time in the run-time library,
or is I/O-bound, then converting it into C is unlikely
to make a big impact.

2.4 Results

The initial results of 211 can best be described as
“mixed.” All the results in this section were gener-

1Depending on the platform.

ated on a machine with a 200MHz Pentium-MMX
processor, 512K of cache and 64M of RAM, using
Windows NT 4.0 and Visual C++ 5.0. The ver-
sion of 211 used converts less than half the PVM
instructions: it can convert 37 out of a total of 84
PVM instructions.

Table 1 shows the results for Pystone 1.1, the
Dhrystone benchmark included in the Python dis-
tribution. I ran three tests: an unmodified Python
interpreter straight from the Win32 distribution; a
modified Python interpreter which was customized
for Pystone but ran the unmodified pystone.pyc; a
“211” test which used a modified interpreter and a
modified pystone.pyc. The file ceval.c is the C
source file containing the Python interpreter.

From the numbers, it is fair to say that 211 speeds
up the Pystone code, but at a cost too high to jus-
tify. On the other hand, the PyBench suite of bench-
marks [11] shows some more interesting (and promis-
ing!) results in Figure 4.

Pybench converted into C is too much for Visual
C++ on my machine to optimize, so instead I se-
lected one of its source files, Constructs.py, and
ran it through 211 alone. This means that the
“IfThenElse,” “NestedForLoops,” and “ForLoops”
tests have been compiled into C — this can be seen
as picking a hot spot in a Python program and con-
verting it to C. This results in 17000 lines being
added to ceval.c, and an object file size of 137383
bytes.

The three tests directly affected by 211 show
a dramatic speed improvement. I conjecture
that slight speed decreases seen when using un-
converted PVM code and a modified interpreter
are architecture-related: ceval.obj passes a size
threshold which necessitates use of slower branch in-
structions in the Pentium machine code. However,
there are some artifacts — the results for “Built-
inMethodLookup” and “StringSlicing” — which re-
quire further study.

The next question is, how far can this conversion
technique be pushed?

3 How to do Better

In this section I discuss five avenues which I think
should (and, in one case, should not) be taken to get
better results when converting PVM code to C; some
of these suggestions are also applicable to Python
optimization in general.

These comments should not be construed as a
criticism of Python’s current design. Some designs



PYBENCH 0.6

Benchmark: 211-python (rounds=10, warp=20)

Tests: per run per oper. diff *

------------------------------------------------------------------------

BuiltinFunctionCalls: 791.87 ms 6.21 us +2.35%

BuiltinMethodLookup: 944.35 ms 1.80 us +8.73%

ConcatStrings: 2297.37 ms 15.32 us -0.39%

CreateInstances: 1198.43 ms 28.53 us -2.26%

CreateStringsWithConcat: 889.78 ms 4.45 us -0.77%

DictCreation: 1161.54 ms 7.74 us -0.18%

ForLoops: 523.39 ms 52.34 us -62.11%

IfThenElse: 684.27 ms 1.01 us -38.49%

ListSlicing: 1006.17 ms 287.48 us +2.18%

NestedForLoops: 383.25 ms 1.10 us -49.84%

NormalClassAttribute: 957.16 ms 1.60 us +0.35%

NormalInstanceAttribute: 931.60 ms 1.55 us +0.38%

PythonFunctionCalls: 890.95 ms 5.40 us +3.89%

PythonMethodCalls: 725.18 ms 9.67 us -0.02%

Recursion: 690.87 ms 55.27 us +2.17%

SecondImport: 937.91 ms 37.52 us -4.78%

SecondPackageImport: 961.25 ms 38.45 us -5.25%

SecondSubmoduleImport: 1174.28 ms 46.97 us -4.81%

SimpleComplexArithmetic: 1150.36 ms 5.23 us -1.00%

SimpleDictManipulation: 842.63 ms 2.81 us -0.08%

SimpleFloatArithmetic: 814.21 ms 1.48 us +0.01%

SimpleIntFloatArithmetic: 855.92 ms 1.30 us +0.71%

SimpleIntegerArithmetic: 857.16 ms 1.30 us +0.72%

SimpleListManipulation: 1033.49 ms 3.83 us +3.93%

SimpleLongArithmetic: 929.77 ms 5.63 us +0.11%

SmallLists: 1569.67 ms 6.16 us +3.16%

SmallTuples: 950.77 ms 3.96 us +2.78%

SpecialClassAttribute: 962.20 ms 1.60 us +0.14%

SpecialInstanceAttribute: 1062.08 ms 1.77 us -0.54%

StringSlicing: 949.31 ms 5.42 us -11.92%

TryExcept: 1658.73 ms 1.11 us +2.33%

TryRaiseExcept: 990.82 ms 66.05 us -3.89%

TupleSlicing: 903.79 ms 8.61 us -5.57%

------------------------------------------------------------------------

Average round time: 37401.40 ms -4.80%

*) measured against: unmodified-python (rounds=10, warp=20)

Figure 4: PyBench results (partial compilation to C).



Unmodified Modified 211
Results (Pystones/second) 2736.42 2708.75 2921.17

ceval.c (lines) 2916 14890 14890
ceval.obj (bytes) 49838 116540 116540
pystone.pyc (bytes) 8270 8270 6018

Table 1: Pystone results (full compilation to C).

are better suited to certain applications than others,
however, and it is safe to say that applications like
211 were not a priority when Python was created.

3.1 Opcode Education

In Section 2.4 I stated that 211 was not yet able to
convert all of the PVM’s opcodes into C. No tech-
nical difficulties preclude teaching 211 about the re-
maining opcodes. As a matter of expediency, I added
opcodes lazily as required by the PVM code input
to 211.

When run, 211 prints a “top ten” list of PVM op-
codes it was unable to convert, ordered by the fre-
quency in which they occurred. This gave a static
indication of opcodes to teach 211; in addition, I
used Python’s dynamic execution profiler to identify
frequently-executed opcodes. I used both these mea-
sures when deciding which opcodes to implement.

This means that, at present, a rewritten .pyc file
invariably contains some regular PVM instructions.
If these should happen to fall in a critical spot in the
program, such as an inner loop, then performance is
going to suffer. Teaching 211 the complete set of
PVM opcodes would eliminate the transitions be-
tween specialized and nonspecialized code, avoiding
one source of overhead. The longer C code sequences
would also create more optimization opportunities,
for both 211’s peephole optimizer as well as for the
C compiler’s optimizer.

3.2 Conversion Heuristics

Currently, 211 always tries to convert the longest
sequences of PVM instructions it is able to. This
may not be the best strategy, since it can result in
reams of C code being output; this time-space trade-
off has been noted in similar projects [14]. A better
approach may be to selectively convert PVM code,
based on either heuristics or thresholds. For in-
stance, conversion could be restricted to frequently-
seen pairs of instructions.

Ideally, the conversion heuristics could be tuned so
that 211 would yield an acceptable speed increase,
but with a much smaller amount of C code than
it now outputs. It is unlikely that a single heuris-
tic would work well for all inputs; run-time profiling
feedback could perhaps be employed to select an ap-
propriate heuristic.

3.3 Register Machines

As mentioned in the introduction, the PVM is a
stack machine. As such, there is overhead involved
in moving objects to and from the stack. An al-
ternative is a register-based machine, which places
intermediate values into registers rather than on a
stack, and incurs no stack overhead. It is telling
that programs which convert Forth and Java VM
code into C begin by mapping stack locations into
“registers” by placing their values into C variables
[16, 6]. To implement this would require changing
the PVM as well as the Python compiler.
There is another compelling reason to consider a

register-based VM. There are a number of good op-
timizing C compilers available, despite it being a no-
toriously hard language to optimize. In terms of con-
verting PVM to C, the key is to get the C output in
such a form that an optimizing C compiler can make
good use of it. But even the best C compilers are not
likely to discover how values on a stack interrelate
— stack manipulations appear just as pointer oper-
ations on memory. By going to a register-based VM,
the data flow through the C code becomes clearer (as
uses of C variables) and the compiler has a better
chance of making more optimizations.
The following C program abstracts stack manip-

ulation in the Python interpreter. The space for
the stack is allocated externally, and elements of the
stack are referenced using a pointer.

int i, j;

void interpreter(void) {

extern int *get_frame(void);



int *stack_pointer = get_frame();

#define PUSH(x) (*stack_pointer++ = x)

#define POP() (*--stack_pointer)

PUSH(123);

PUSH(456);

i = POP();

j = POP();

}

Even in theory, it is difficult for an optimizing C
compiler to determine one key property about the
values pushed onto the stack: their liveness. In other
words, it cannot know if another function will want
to use the contents of the memory allocated to the
stack, so it must write both numbers to memory (as
opposed to just keeping them in registers). In prac-
tice, C compilers fared even worse: neither Visual
C++2 nor gcc3 with full optimization were even able
to discover that j was supposed to have the value
123 without reloading it from memory.
In contrast, say that we have a register-based VM.

A program like 211 could trivially map the registers
into C variables, resulting in a program like the one
below.

int i, j;

void interpreter(void) {

int reg_0, reg_1;

reg_0 = 123;

reg_1 = 456;

i = reg_1;

j = reg_0;

}

The liveness of the values and the flow of data
is now clear to the C compiler. Both the above-
mentioned C compilers do an excellent job translat-
ing this program into assembly.

3.4 Instruction Granularity

One frustration when developing 211 was that a lot
of information was buried inside the interpreter’s C
code rather than made explicit in the PVM code;
stack accesses and the details of function/method
invocation are but two examples. I propose finer-
grained PVM instructions, where each current PVM
instruction would be replaced by one or more shorter

2Version 5.0 for 80x86, with /Ox flag.
3Version 2.8.1 for SPARC, with -O9 flag.

ones. In essence, this would create a more RISC-like
PVM. The immediate result of this change would be
larger .pyc files, and slower execution resulting from
a greater number of instructions being dispatched in
the interpreter. However, in the long run, I think
this loss would be more than won back by exposing
more information to 211-type programs and high-
level PVM optimizers.

3.5 Interpreter Structure

There are other methods known for implementing in-
terpreters. “Threaded code” and “indirect threaded
code” are two techniques which are used in inter-
preter implementation [2, 5]. While the details of
these two methods are beyond the scope of this pa-
per, suffice it to say that both eliminate the fetch-
execute loop of classical interpreters. Neither are
likely to make any impact on the current PVM,
though. It has been shown that the speed differ-
ences between the methods become nonexistent as
the amount of time taken by each VM instruction
increases [10]; this is echoed in more recent work
[15].

Given this, I think it is not worthwhile to change
the interpreter’s structure until such time as Python
has a more RISC-like PVM, with finer-grained in-
structions. This argument might also be reasonably
extended to discourage “micro-optimizations” in the
PVM instruction-fetching code.

4 Conclusion

In this paper I have described 211, an experimen-
tal program which converts Python virtual machine
code into C. 211 is intended for use on Python ap-
plications that need to run faster, where manual
translation of hot spots to C is not a viable option.
The general conversion technique has shown merit,
both in my own results and in similar work done for
other programming languages. I think that changes
to Python’s internals will help produce even better
results.

Acknowledgments

Shannon Jaeger, Jim Uhl, and Mike Zastre made
numerous helpful comments on early drafts of this
paper. The anonymous referees’ suggestions also
brought out some important points which I had over-
looked.



References

[1] A. V. Aho, R. Sethi, and J. D. Ullman.
Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986.

[2] J. R. Bell. Threaded Code. Communications of
the ACM, 16(6):370–372, 1973.

[3] J. L. Bentley. Writing Efficient Programs.
Prentice-Hall, 1982.

[4] L. P. Deutsch. Efficient Implementation of the
Smalltalk-80 System. ACM POPL ’84 Proceed-
ings, pages 297–302.

[5] R. B. K. Dewar. Indirect threaded code. Com-
munications of the ACM, 18(6):330–331, 1975.

[6] M. A. Ertl and M. Maierhofer. Translating
Forth to Efficient C. EuroForth ’95 Proceedings.

[7] M. A. Ertl. Stack Caching for Interpreters.
ACM SIGPLAN PLDI ’95 Conference, pages
315–327.

[8] M. A. Ertl. A New Approach to Forth Native
Code Generation. EuroForth ’92 Proceedings,
pages 73–78.

[9] N. D. Jones, C. K. Gomard, and P. Sestoft. Par-
tial Evaluation and Automatic Program Gener-
ation. Prentice Hall, 1993.

[10] P. Klint. Interpretation Techniques. Software,
Practice & Experience, 11:963–973, 1981.

[11] M.-A. Lemburg. PyBench 0.6. http://-

starship.skyport.net/~lemburg/-

pybench-0.6.zip.

[12] M. Maierhofer and M. A. Ertl. Local Stack Allo-
cation. Compiler Construction (CC ’98), pages
189–203. Springer, 1998.

[13] S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

[14] T. Pittman. Two-Level Hybrid Inter-
preter/Native Code Execution for Com-
bined Space-Time Program Efficiency. ACM
SIGPLAN, 22(7):150–152, 1987.

[15] I. Piumarta and F. Riccardi. Optimizing direct
threaded code by selective inlining. ACM SIG-
PLAN PLDI ’98 Conference, pages 291–300.

[16] T. A. Proebsting et. al. Toba: Java For Appli-
cations. COOTS ’97 Proceedings.

[17] D. M. Ungar. The Design and Evaluation of
a High-Performance Smalltalk System. MIT
Press, 1987.


