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Abstract

“Little languages” such as configuration files or
HTML documents are commonplace in computing.
This paper divides the work of implementing a little
language into four parts, and presents a framework
which can be used to easily conquer the implemen-
tation of each. The pieces of the framework have
the unusual property that they may be extended
through normal object-oriented means, allowing fea-
tures to be added to a little language simply by sub-
classing parts of its compiler.

1 Introduction

Domain-specific languages, or “little languages,” are
frequently encountered when dealing with comput-
ers [3]. Configuration files, HTML documents, shell
scripts — all are little structured languages, yet
may lack the generality and features of full-blown
programming languages. Whether writing an in-
terpreter for a little language, or compiling a little
language into another language, compiler techniques
can be used.

In many cases, an extremely fast compiler is not
needed, especially if the input programs tend to be
small. Instead, issues can predominate such as com-
piler development time, maintainability of the com-
piler, and the ability to easily add new language fea-
tures. This is Python’s strong suit.

This paper describes some successful techniques I
developed while working on two compilers for little
languages: one for a subset of Java, the other an
optimizing compiler for Guide, a CGI-programming
language [12]. The net result is a framework which
can be used to implement little languages easily.
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Figure 1: Compiler model.

2 Model of a Compiler

Like most nontrivial pieces of software, compilers are
generally broken down into more manageable mod-
ules, or phases. The design issues involved and the
details of each phase are too numerous to discuss
here in depth; there are many excellent books on
the subject, such as [1] and [2].
I began with a simple model of a compiler having

only four phases, as shown in Figure 1:

1. Scanning, or lexical analysis. Breaks the input
stream into a list of tokens. For example, the
expression “2 + 3 * 5” can be broken up into
five tokens: number plus number times number.
The values 2, 3, and 5 are attributes associated
with the corresponding number token.

2. Parsing, or syntax analysis. Ensures that a list
of tokens has valid syntax according to a gram-
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Figure 2: Abstract syntax tree (AST).

mar — a set of rules that describes the syntax of
the language. For the above example, a typical
expression grammar would be:

expr ::= expr + term

expr ::= term

term ::= term * factor

term ::= factor

factor ::= number

In English, this grammar’s rules say that an
expression can be an expression plus a term,
an expression may be a term by itself, and so
on. Intuitively, the symbol on the left-hand side
of “::=” may be thought of as a variable for
which the symbols on the right-hand side may
be substituted. Symbols that don’t appear on
any left-hand side — like +, *, and number —
correspond to the tokens from the scanner.

The result of my parsing is an abstract syn-
tax tree (AST), which represents the input pro-
gram. For “2 + 3 * 5,” the AST would look like
the one in Figure 2.

3. Semantic analysis. Traverses the AST one or
more times, collecting information and check-
ing that the input program had no semantic er-
rors. In a typical programming language, this
phase would detect things like type conflicts,
redefined identifiers, mismatched function pa-
rameters, and numerous other errors. The in-
formation gathered may be stored in a global
symbol table, or attached as attributes to the
nodes of the AST itself.

4. Code generation. Again traversing the AST,
this phase may directly interpret the program,

or output code in C or assembly which would
implement the input program. For expressions
as simple as those in the example, they could
be evaluated on the fly in this phase.

Each phase performs a well-defined task, and
passes a data structure on to the next phase. Note
that information only flows one way, and that each
phase runs to completion before the next one starts
1. This is in contrast to oft-used techniques which
have a symbiosis between scanning and parsing,
where not only may several phases be working con-
currently, but a later phase may send some feedback
to modify the operation of an earlier phase.
Certainly all little language compilers won’t fit

this model, but it is extremely clean and elegant for
those that do. The main function of the compiler,
for instance, distills into three lines which reflect the
compiler’s structure:

f = open(filename)

generate(semantic(parse(scan(f))))

f.close()

In the remainder of this paper, I will examine each
of the above four phases, showing how my frame-
work can be used to implement the little expression
language above. Following this will be a discussion
of some of the inner workings of the framework’s
classes.

3 The Framework

A common theme throughout this framework is that
the user should have to do as little work as possible.
For each phase, my framework supplies a class which
performs most of the work. The user’s job is simply
to create subclasses which customize the framework.

3.1 Lexical Analysis

Lexical analyzers, or scanners, are typically imple-
mented one of two ways. The first way is to write
the scanner by hand; this may still be the method
of choice for very small languages, or where use of a
tool to generate scanners automatically is not possi-
ble. The second method is to use a scanner generator
tool, like lex [11], which takes a high-level descrip-
tion of the permitted tokens, and produces a finite
state machine which implements the scanner.
Finite state machines are equivalent to regular ex-

pressions; in fact, one uses regular expressions to

1There is some anecdotal evidence that parts of production
compilers may be moving towards a similar model [18].



specify tokens to scanner generators! Since Python
has regular expression support, it is natural to use
them to specify tokens. (As a case in point, the
Python module “tokenize” has regular expressions
to tokenize Python programs.)
So GenericScanner, my generic scanner class, re-

quires a user to create a subclass of it in which
they specify the regular expressions that the scanner
should look for. Furthermore, an “action” consist-
ing of arbitrary Python code can be associated with
each regular expression — this is typical of scanner
generators, and allows work to be performed based
on the type of token found.
Below is a simple scanner to tokenize expressions.

The parameter to the action routines is a string con-
taining the part of the input that was matched by
the regular expression.

class SimpleScanner(GenericScanner):

def __init__(self):

GenericScanner.__init__(self)

def tokenize(self, input):

self.rv = []

GenericScanner.tokenize(self, input)

return self.rv

def t_whitespace(self, s):

r’ \s+ ’

pass

def t_op(self, s):

r’ \+ | \* ’

self.rv.append(Token(type=s))

def t_number(self, s):

r’ \d+ ’

t = Token(type=’number’, attr=s)

self.rv.append(t)

Each method whose name begins with “t ” is an
action; the regular expression for the action is placed
in the method’s documentation string. (The reason
for this unusual design is explained in Section 4.1.)
When the tokenize method is called, a list of To-

ken instances is returned, one for each operator and
number found. The code for the Token class is
omitted; it is a simple container class with a type
and an optional attribute. White space is skipped
by SimpleScanner, since its action code does noth-
ing. Any unrecognized characters in the input are
matched by a default pattern, declared in the action
GenericScanner.t default. This default method can
of course be overridden in a subclass. A trace of

SimpleScanner on the input “2 + 3 * 5” is shown in
Table 1.

Input Method Token Added
2 t number number (attribute 2)
space t whitespace
+ t op +
space t whitespace
3 t number number (attribute 3)
space t whitespace
* t op *
space t whitespace
5 t number number (attribute 5)

Table 1: Trace of SimpleScanner.

Scanners made with GenericScanner are extensi-
ble, meaning that new tokens may be recognized
simply by subclassing. To extend SimpleScanner to
recognize floating-point number tokens is easy:

class FloatScanner(SimpleScanner):

def __init__(self):

SimpleScanner.__init__(self)

def t_float(self, s):

r’ \d+ \. \d+ ’

t = Token(type=’float’, attr=s)

self.rv.append(t)

How are these classes used? Typically, all that is
needed is to read in the input program, and pass it
to an instance of the scanner:

def scan(f):

input = f.read()

scanner = FloatScanner()

return scanner.tokenize(input)

Once the scanner is done, its result is sent to the
parser for syntax analysis.

3.2 Syntax Analysis

The outward appearance of GenericParser, my
generic parser class, is similar to that of Generic-
Scanner.
A user starts by creating a subclass of Generic-

Parser, containing special methods which are named
with the prefix “p ”. These special methods encode
grammar rules in their documentation strings; the
code in the methods are actions which get executed
when one of the associated grammar rules are rec-
ognized by GenericParser.



The expression parser subclass is shown below.
Here, the actions are building the AST for the input
program. AST is also a simple container class; each
instance of AST corresponds to a node in the tree,
with a node type and possibly child nodes.

class ExprParser(GenericParser):

def __init__(self, start=’expr’):

GenericParser.__init__(self, start)

def p_expr_1(self, args):

’ expr ::= expr + term ’

return AST(type=args[1],

left=args[0],

right=args[2])

def p_expr_2(self, args):

’ expr ::= term ’

return args[0]

def p_term_1(self, args):

’ term ::= term * factor ’

return AST(type=args[1],

left=args[0],

right=args[2])

def p_term_2(self, args):

’ term ::= factor ’

return args[0]

def p_factor_1(self, args):

’ factor ::= number ’

return AST(type=args[0])

def p_factor_2(self, args):

’ factor ::= float ’

return AST(type=args[0])

The grammar’s start symbol is passed to the con-
structor.
ExprParser builds the AST from the bottom up.

Figure 3 shows the AST in Figure 2 being built,
and the sequence in which ExprParser’s methods are
invoked.
The “args” passed in to the actions are based on

a similar idea used by yacc [11], a prevalent parser
generator tool. Each symbol on a rule’s right-hand
side has an attribute associated with it. For token
symbols like +, this attribute is the token itself. All
other symbols’ attributes come from the return val-
ues of actions which, in the above code, means that
they are subtrees of the AST. The index into args
comes from the position of the symbol in the rule’s
right-hand side. In the running example, the call

Method Called AST After Call

p factor 1 ❞

p factor 1 ❞ ❞

p term 2 ❞ ❞

p term 1

❞

❞ ❞

✁
✁✁

❆
❆❆

p factor 1 ❞

❞

❞ ❞

✁
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❆
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❞

❞ ❞

✁
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❆
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❆
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❞

❞

❞

❞ ❞

✁
✁✁

❆
❆❆

❆
❆❆

✁
✁
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✁

✁

Figure 3: AST construction.



to p expr 1 has len(args) == 3: args[0] is expr’s
attribute, the left subtree of + in the AST; args[1]
is +’s attribute, the token +; args[2] is term’s at-
tribute, the right subtree of + in the AST.
The routine to use this subclass is straightforward:

def parse(tokens):

parser = ExprParser()

return parser.parse(tokens)

Although omitted for brevity, ExprParser can be
subclassed to add grammar rules and actions, the
same way the scanner was subclassed.
After syntax analysis, the parser has produced an

AST, and verified that the input program adheres to
the grammar rules. Next, the input’s meaning must
be checked by the semantic analyzer.

3.3 Semantic Analysis

Semantic analysis is performed by traversing the
AST. Rather than spread code to traverse an AST
all over the compiler, I have a single base class, AST-
Traversal, which knows how to walk the tree. Sub-
classes of ASTTraversal supply methods which get
called depending on what type of node is encoun-
tered.
To determine which method to invoke, AST-

Traversal will first look for a method with the same
name as the node type (plus the prefix “n ”), then
will fall back on an optional default method if no
more specific method is found.
Of course, ASTTraversal can supply many differ-

ent traversal algorithms. I have found three useful:
preorder, postorder, and a pre/postorder combina-
tion. (The latter allows methods to be called both
on entry to, and exit from, a node.)
For example, say that we want to forbid the mix-

ing of floating-point and integer numbers in our ex-
pressions:

class TypeCheck(ASTTraversal):

def __init__(self, ast):

ASTTraversal.__init__(self, ast)

self.postorder()

def n_number(self, node):

node.exprType = ’number’

def n_float(self, node):

node.exprType = ’float’

def default(self, node):

# this handles + and * nodes

leftType = node.left.exprType

rightType = node.right.exprType

if leftType != rightType:

raise ’Type error.’

node.exprType = leftType

I found the semantic checking code easier to write
and understand by taking the (admittedly less effi-
cient) approach of making multiple traversals of the
AST — each pass performs a single task.
TypeCheck is invoked from a small glue routine:

def semantic(ast):

TypeCheck(ast)

#

# Any other ASTTraversal classes

# for semantic checking would be

# instantiated here...

#

return ast

After this phase, I have an AST for an input pro-
gram that is lexically, syntactically, and semantically
correct — but that does nothing. The final phase,
code generation, remedies this.

3.4 Code Generation

The term “code generation” is somewhat of a mis-
nomer. As already mentioned, this phase will tra-
verse the AST and implement the input program,
either directly through interpretation, or indirectly
by emitting some code.
Our expressions, for instance, can be easily inter-

preted:

class Interpret(ASTTraversal):

def __init__(self, ast):

ASTTraversal.__init__(self, ast)

self.postorder()

print ast.value

def n_number(self, node):

node.value = int(node.attr)

def n_float(self, node):

node.value = float(node.attr)

def default(self, node):

left = node.left.value

right = node.right.value

if node.type == ’+’:

node.value = left + right

else:

node.value = left * right



In contrast, my two compilers use an ASTTraver-
sal to output an intermediate representation (IR)
which is effectively a machine-independent assembly
language. This IR then gets converted into MIPS
assembly code in one compiler, C++ code in the
other.
I am considering ways to incorporate more so-

phisticated code generation methods into this frame-
work, such as tree pattern matching with dynamic
programming [8].

4 Inner Workings

4.1 Reflection

Extensibility presents some interesting design chal-
lenges. The generic classes in the framework, with-
out any modifications made to them, must be able
to divine all the information and actions contained
in their subclasses, subclasses that didn’t exist when
the generic classes were created.
Fortunately, an elegant mechanism exists in

Python to do just this: reflection. Reflection refers
to the ability of a Python program to query and
modify itself at run time (this feature is also present
in other languages, like Java and Smalltalk).
Consider, for example, my generic scanner class.

GenericScanner searches itself and its subclasses at
run time for methods that begin with the prefix “t .”
These methods are the scanner’s actions. The regu-
lar expression associated with the actions is specified
using a well-known method attribute that can be
queried at run time — the method’s documentation
string.
This wanton abuse of documentation strings can

be rationalized. Documentation strings are a
method of associating meta-information — com-
ments — with a section of code. My framework
is an extension of that idea. Instead of com-
ments intended for humans, however, I have meta-
information intended for use by my framework. As
the number of reflective Python applications grows,
it may be worthwhile to add more formal mecha-
nisms to Python to support this task.

4.2 GenericScanner

Internally, GenericScanner works by constructing a
single regular expression which is composed of all
the smaller regular expressions it has found in the
action methods’ documentation strings. Each com-
ponent regular expression is mapped to its action
using Python’s symbolic group facility.

Unfortunately, there is a small snag. Python
follows the Perl semantics for regular expressions
rather than the POSIX semantics, which means it
follows the “first then longest” rule — the leftmost
part of a regular expression that matches is always
taken, rather than using the longest match. In the
above example, if GenericScanner were to order the
regular expression so that “\d+” appeared before
“\d+\.\d+”, then the input 123.45 would match as
the number 123, rather than the floating-point num-
ber 123.45. To work around this, GenericScanner
makes two guarantees:

1. A subclass’ patterns will be matched before any
in its parent classes.

2. The default pattern for a subclass, if any, will
be matched only after all other patterns in the
subclass have been tried.

One obvious change to GenericScanner is to auto-
mate the building of the list of tokens — each “t ”
method could return a list of tokens which would be
appended to the scanner’s list of tokens. The reason
this is not done is because it would limit potential
applications of GenericScanner. For example, in one
compiler I used a subclass of GenericScanner as a
preprocessor which returned a string; another scan-
ner class then broke that string into a list of tokens.

4.3 GenericParser

GenericParser is actually more powerful than was
alluded to in Section 3.2. At the cost of greater cou-
pling between methods, actions for similar rules may
be combined together rather than having to dupli-
cate code — my original version of ExprParser is
shown below.

class ExprParser(GenericParser):

def __init__(self, start=’expr’):

GenericParser.__init__(self, start)

def p_expr_term(self, args):

’’’

expr ::= expr + term

term ::= term * factor

’’’

return AST(type=args[1],

left=args[0],

right=args[2])

def p_expr_term_2(self, args):

’’’



expr ::= term

term ::= factor

’’’

return args[0]

def p_factor(self, args):

’’’

factor ::= number

factor ::= float

’’’

return AST(type=args[0])

Taking this to extremes, if a user is only interested
in parsing and doesn’t require an AST, ExprParser
could be written:

class ExprParser(GenericParser):

def __init__(self, start=’expr’):

GenericParser.__init__(self, start)

def p_rules(self, args):

’’’

expr ::= expr + term

expr ::= term

term ::= term * factor

term ::= factor

factor ::= number

factor ::= float

’’’

In theory, GenericParser could use any parsing al-
gorithm for its engine. However, I chose the Earley
parsing algorithm [6] which has several nice proper-
ties for this application [10]:

1. It is one of the most general algorithms known;
it can parse all context-free grammars whereas
the more popular LL and LR techniques cannot.
This is important for easy extensibility; a user
should ideally be able to subclass a parser with-
out worrying about properties of the resulting
grammar.

2. It generates all its information at run-time,
rather than having to precompute sets and ta-
bles. Since the grammar rules aren’t known un-
til run-time, this is just as well!

Unlike most other parsing algorithms, Earley’s
method parses ambiguous grammars. Currently,
ambiguity presents a problem since it is not clear
which actions should be invoked. Future versions
of GenericParser will have an ambiguity-resolution
scheme to address this.

To accommodate a variety of possible parsing al-
gorithms (including the one I used), GenericParser
only makes one guarantee with respect to when the
rules’ actions are executed. A rule’s action is exe-
cuted only after all the attributes on the rule’s right-
hand side are fully computed. This condition is suf-
ficient to allow the correct construction of ASTs.

4.4 ASTTraversal

ASTTraversal is the least unusual of the generic
classes. It could be argued that its use of reflection
is superfluous, and the same functionality could be
achieved by having its subclasses provide a method
for every type of AST node; these methods could
call a default method themselves if necessary.

The problems with this non-reflective approach
are threefold. First, it introduces a maintenance is-
sue: any additional node types added to the AST
require all ASTTraversal’s subclasses to be changed.
Second, it forces the user to do more work, as meth-
ods for all node types must be supplied; my experi-
ence, especially for semantic checking, is that only
a small set of node types will be of interest for a
given subclass. Third, some node types may not
map nicely into Python method names — I prefer
to use node types that reflect the little language’s
syntax, like +, and it isn’t possible to have methods
named “n +”2. This latter point is where it is useful
to have ASTTraversal reflectively probe a subclass
and automatically invoke the default method.

4.5 Design Patterns

Although developed independently, the use of reflec-
tion in my framework is arguably a specialization of
the Reflection pattern [4]. I speculate that there
are many other design patterns where reflection can
be exploited. To illustrate, ASTTraversal wound up
somewhere between the Default Visitor [13] and Re-
flection patterns, although it was originally inspired
by the Visitor pattern [9].

Two other design patterns can be applied to my
framework too. First, the entire framework could
be organized explicitly as a Pipes and Filters pat-
tern [4]. Second, the generic classes could support
interchangeable algorithms via the Strategy pattern
[9]; parsing algorithms, in particular, vary widely in
their characteristics, so allowing different algorithms
could be a boon to an advanced user.

2Not directly, anyway. . .



5 Comparison to Other Work

The basis of this paper is the observation that lit-
tle languages, and the need to implement them, are
recurring problems. Not all authors even agree on
this point — Shivers [16] presents an alternative to
little languages and a Scheme-based implementation
framework. Tcl was also developed to address the
proliferation of little languages [14].
Other Python packages exist to automate parts of

scanning and parsing. PyLR [5] uses a parsing en-
gine written in C to accelerate parsing; kwParsing
[17] automates the implementation of common pro-
gramming language features at the cost of a more
complex API. Both require precomputation of scan-
ning and parsing information. YAPPS [15] uses the
weakest parsing algorithm of the surveyed packages,
and its author notes ‘It is not fast, powerful, or par-
ticularly flexible.’ There are occasional references to
the PyBison package, which I was unable to locate.
For completeness, the mcf.pars package [7] is an

interesting nontraditional system based on general-
ized pattern matching, but is sufficiently different
from my framework to preclude any meaningful com-
parisons.

6 Not-so-Little Languages

This paper has presented a framework I have devel-
oped to build compilers in Python. It uses reflection
and design patterns to produce compilers which can
be easily extended using traditional object-oriented
methods.
At present, this framework has proved its effec-

tiveness in the implementation of two “little lan-
guages.” I plan to further test this framework by
using it to build a compiler for a larger language —
Python.

Availability

The source code for the framework and the
example used in this paper is available at
http://www.csc.uvic.ca/~aycock.
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