
Instruction Set Architecture of
Mamba, a New Virtual Machine for Python

David Pereira and John Aycock
Department of Computer Science
University of Calgary
2500 University Drive N.W.
Calgary, Alberta, Canada T2N 1N4

{pereira,aycock}@cpsc.ucalgary.ca

TR 2002−706−09

Abstract: Python programs are implemented by compiling them into code for a
virtual machine. Mamba is a new virtual machine for Python whose design is
minimalist and register−based. In contrast, the current Python virtual machine is
stack−based and contains almost six times as many instructions as Mamba. We
anticipate that our smaller instruction set will greatly simplify optimization
implementation. In this paper we detail Mamba’s instruction set and execution
model.

1

Programming Model

Mamba is a new virtual machine for the Python language. Its instruction set is quite different from the
instruction set of the standard Python virtual machine; there are 18 register−based instructions instead of
103 stack−based instructions. This reduction in instruction set size is accomplished by removing
functionality from instructions and relocating that functionality into objects that the instructions act upon.

By moving functionality into objects we can remove many instructions, as long as:
1. All object types present the functionality they support via an interface.
2. The virtual machine provides a set of basic instructions to access that common interface.

For example, the standard Python virtual machine has an instruction namedBINARY_SUBSCR. This
instruction uses the top object on the stack as an index into the object below it. The object returned by this
subscription operation then replaces the two top items on the stack. The implementation of this instruction
contains special cases to subscript different types of objects such as strings, tuples, lists, and dictionaries.

However, in the Mamba virtual machine there is noBINARY_SUBSCRinstruction. Instead, each type
which supports the subscription operation provides that functionality via the__getitem__ method. In
this case,

1. The __getitem__ method for tuples will check if the given index is an integer. If not, it will
raise aTypeError exception. Then it will check if the index is out of range. If so, it will
raise anIndexError exception. Otherwise, it will return the object at that position in the
tuple.

2. The __getitem__ method for lists would work similarly, as would the__getitem__
method for strings.

3. The__getitem__ method for dictionaries would use the given parameter as a key. It would
then search for a key−value mapping containing the given key, and, if there exists such a
mapping, it will return the corresponding value. Otherwise it will raise aKeyError
exception.

4. Objects that do not support that this functionality will not have a __getitem__ method.

The virtual machine provides an instruction to retrieve methods such as__getitem__ from objects that
provide them. It also provides an instruction to call a method with a set of arguments. The following
example, written in Mamba pseudo−assembler, does this.

GETATTR Rcontainer , "__getitem__", R getitem

CALL Rgetitem (R key) −> R result

In the above example,Rcontainer , andRkey are registers which contain references to the indexable object
(such as a string, tuple, list or dictionary) and the indexing object, respectively.Rresult is the register that
will hold the result of the computation. TheGETATTRinstruction extracts the__getitem__ method for
the object referenced inRcontainer and puts it into registerRgetitem . Then theCALL instruction calls the
method object referenced in registerRgetitem with the object referenced in registerRkey as its parameter
and then places the return value in registerRresult . These two Mamba instructions perform the equivalent
of theBINARY_SUBSCRinstruction.Note: Instructions in the Mamba virtual machine are orthogonal in
that any register may be used for any operand. In the above code, any register in the register set can replace
a symbolic register name such as Rcontainer .

2

As a general rule, the expression:

result = OPERATION val, parameter 1,...,parameter n

is expressed in this virtual machine as

result = val.OPERATION(parameter 1,...,parameter n) .

However, there is an exception to this rule. TheOP instruction provides support for binary arithmetic
operations. It is provided even though it can be can rendered redundant by using other instructions. This is
because its operation is quite complicated, and, if excluded, code bloat would result since a lengthy
sequence of virtual machine instructions would be required to emulate its operation. Furthermore, this
sequence has not been packaged as a function since it is frequently required and the function call overhead
would be very costly.

We mentioned two criteria above by which Mamba moves functionality into objects, allowing us to reduce
the number of virtual machine instructions. In detail, these are:

1. The common interface. Each object in this virtual machine is a namespace − a map from
names to objects. In this machine, a name is any string of characters, called theattribute name.
The value associated with an attribute name can be any Python object, called theattribute
value. A pair consisting of an attribute name and its associated attribute value is called an
attribute. In the above example,__getitem__ is an attribute of string, tuple, list, and
dictionary objects;__getitem__ is the attribute name and the method object implementing
the desired functionality is the attribute value.

2. A set of instructions to access the common interface. There are three main instructions to
access and modify the namespace of an object:

1. GETATTR− Given an object and an attribute name, it returns the associated attribute
value.

2. SETATTR− Given an object, an attribute name and a value, it changes the attribute
value associated with the attribute name to the given value, if an attribute with the
given attribute name already exists in the namespace of the object. Otherwise, it
creates an attribute with the given name and value in the namespace of the object.

3. DELATTR− Given an object, and an attribute name, it deletes the attribute name and
its associated attribute value from the namespace of the object.

3

Execution Model

The execution model for this machine can be viewed from three levels: the thread level, the inter−
procedural level and the intra−procedural level.

This virtual machine provides support for running only a single thread of Python code.

Interprocedural Control Flow in this virtual machine is provided by function calls and exception−handling.
Function calls are supported by a call stack which stores the activation records of each function invocation.
Each function invocation is given a new register set. When it makes a call to another function, the register
set is saved and the called function is executed. The saved registers are restored when the called function
returns. Nested functions are not currently supported.

Support for asynchronous interprocedural control flow is provided by exceptions. A terminating model of
exception handling is used in which only one exception may be active at any given time. The point at
which an exception is thrown and the point at which it is caught can span arbitrarily many function
invocations.

Intraprocedural Control Flow is accomplished via jump instructions and exception handling.

Memory management is performed automatically without programmer intervention.

4

Instruction Set Overview

The instructions of the virtual machine fall into the following categories:

1. Namespace manipulation instructions:
1. GETATTR See above
2. SETATTR See above.
3. DELATTR: See above.
4. GETATTRS: A variant of GETATTRwhich works with multiple attribute

names.
2. Control Flow instructions:

1. Structured
1. CALL Call a function
2. RETURN Return from a function
3. RAISE Raise an exception
4. HANDLE Handle an exception

2. Unstructured
1. JUMP Unconditional jump
2. JUMPZ Jump if == 0
3. JUMPNZ Jump if <> 0
4. JUMPA Jump if > 0
5. JUMPNA Jump if <= 0
6. JUMPB Jump if < 0
7. JUMPNB Jump if >= 0

3. Miscellaneous
1. IMPORT Import a module
2. NEW Create a new object
3. OP Perform a binary arithmetic operation

5

The Register Set

There are a maximum of 4096 registers in the virtual machine available at any time to a function
invocation. The nth register is designated Rn. All registers have the same functionality; they can be used
with any instruction. The first 64 registers are global; their contents are preserved across function calls. The
remaining 4032 registers are local; their values are saved before a function call is made, and restored upon
return from that call. (It should be noted that only the registers used by the calling function are saved.
Hence, the overhead of saving and restoring registers is restricted to set of registers used by the calling
function). The global registers will be referred to as G0, G1, ..., and L0, L1, ... will denote the local registers.

The global registers G60 and G61 have a special purpose. G60 stores the primary exception datum and G61

stores the secondary exception datum. That is, G60 and G61 provide a place to store exceptions across
function calls while the exception handling mechanism is trying to find a handler for them. The objects in
these registers are matched against the objects given to theHANDLEinstruction, in order to determine if a
given exception handler should handle the exception the registers contain. G60 and G61 can also be used as
parameters to the RAISE instruction, in order to re−raise the current exception.

Of the local registers, L0 and L1 have a special purpose. They are used to store the global and local
namespaces of a function respectively. When a function is called, L0 is set to the global namespace for the
called function (even for function calls across modules), and L1 is initialized to a new empty namespace. It
should be noted that the local namespace is linked to the global namespace. Therefore, if a search of the
local namespace fails, the search continues in the global namespace. For details, see documentation for the
GETATTR instruction.

All instructions with the exception ofMOVEhave an encoding which uses 8 bits to address a register. As a
result, these instructions can address only the first 256 registers. The remaining registers can be accessed
only via the MOVE instruction, whose encoding uses 12 bits to address a register.

6

Objects and Attributes

The following is a list of object types supported by the virtual machine. With the exception of the
Namespace object type, the following types are Python language types. ANamespace object is simply
a collection of attributes.

1. Integer
2. Long Integer
3. Float
4. Complex
5. String
6. Tuple
7. Code
8. List
9. Dictionary
10. Function
11. Class
12. Namespace
13. None
14. NotImplemented
15. Ellipsis
16. Type
17. Slice
18. Method
19. Instance
20. Module
21. Traceback

The attributes that each of these objects have are specified in thePython Language Specification, Section
3.3 Data Model − Special Method Names. Certain special attributes and their uses are discussed later in the
Instruction Set Reference section.

7

Code Objects

The fundamental object in the virtual machine is the code object. It should not be confused with a
Function object; aFunction object references a code object and provides the context in which to
execute the instructions in the code object. A code object, on the other hand, contains the list of virtual
machine instruction that constitute the body of a function. It also contains certain ancillary data needed by
the instructions which it contains.

The first of these data is theattribute name table. Instructions such asGETATTR, SETATTR, and
DELATTRrequire an attribute name parameter. The attribute name table in a code object contains the
attribute names used by the instructions in that code object. Just before the virtual machine begins to
execute the instructions in a given code object, it designates the attribute name table of that code object as
thecurrent attribute name tableto which all references to attribute names made byGETATTR, SETATTR,
DELATTR, etc., are made. When the virtual machine finishes executing code in that code object, the
previous current attribute name table becomes the current attribute name table. There is always a current
attribute name table which the GETATTR, SETATTR, DELATTR, etc., instructions implicitly reference.

The second important data item is thepickle jar. The pickle jar containspickles− descriptions of data from
which objects can be created. Atomic objects such asInteger s, Float s, Complex es, Long s, and
String s are represented as pickles in the pickle jar, and then transformed into virtual machine objects on
demand by theNEWinstruction. A mechanism similar to the one used to manage attribute name tables is
used for pickle jars. Just before the virtual machine begins to execute code in a given code object, it
designates the pickle jar of that code object as thecurrent pickle jar.When the virtual machine finishes
executing code in that code object, the previous current pickle jar is made the current pickle jar. As such
there is always a current pickle jar which the NEW instruction implicitly references. It should be noted that a
code object’s pickle jar can contain one or more pickled Code objects, thereby forming a tree of objects.

8

File Format

Each byte code file interpreted by this virtual machine corresponds to a Python module. Its filename must
end with an extension of.pyc , because theIMPORTinstruction appends this extension to a module name
to derive the filename containing the module’s code.

Each byte code file must contain asinglepickledCode object. It is an error for any other type of object or
for more than one object to be present. When a module is loaded via theIMPORTinstruction, itsCode
object is unpickled, wrapped inside aFunction object and then called with theCALL instruction. This
Code object should contain a list of instructions which initialize the module by creating its global data and
functions.

The format of a pickled Integer object is:

Field Name Size
(Bytes)

Description

TYPE 4 The value of this field must be 0.
VALUE 4 The value of the 32−bit integer. All data in Mamba’s file format is assumed to

use the byte ordering of the machine architecture that Mamba is running on.

The format of a pickled Long object is:

Field Name Size Description
TYPE 4 The value of this field must be 1.
VALUE The value of this field must be an ASCII representation of the long integer, in

base 10, terminated by a ’\0’. If the length of the ASCII string (including the
terminating ’\0’) is not a multiple of 4, pad bytes must be added to the end so
that the start of the next object is aligned to a 32−bit address.

The format of a pickled Float object is:

Field
Name

Size Description

TYPE 4 The value of this field must be 2.
VALUE 8 This field must contain the value of the floating−point number as an IEEE 754

double−precision floating−point number.

The format of a pickled Complex object is:

Field
Name

Size Description

TYPE 4 The value of this field must be 3.
REAL 8 This field specifies the real component of the complex number. It must be an

IEEE 754 double−precision floating−point number.
IMAG 8 This field specifies the imaginary component of the complex number. It must

also be an IEEE 754 double−precision floating−point number.

9

The format of a pickled String object is as follows:

Field
Name

Size Description

TYPE 4 The value of this field must be 4.
LENGTH 4 The field specifies the length of the string.
STRING This field contains an ASCII representation of the string. If the length of the

string is not a multiple of 4, the end of the string must be padded so that the next
pickle will be aligned to a 32−bit address.

The format of a pickled Code object is as follows:

Field Name Size Description
TYPE 4 The value in this field must be 6.
RC 2 The number of local registers used by the code in this code object.
IC 4 The number of instructions in this code object.
IL 4 * IC The instructions of this code object. (Each instruction is 4 bytes long).
PI

PI.S1
PI.DC
PI.S2
PI.NDC

2 A specification of the formal parameters of the code object. The bitfield
abbbbbbb cddddddd describes the layout of PI, where

a = 1, if the code object has a * parameter, 0 otherwise.
bbbbbbb = number of parameters that do not have default arguments.
c = 1, if the code object has a ** parameter, 0 otherwise.
ddddddd = number of parameters that have default arguments.

PNOT (AI.DC +
AI.NDC)*4 The table of parameter name offsets. The offsets are ordered so that they

lexicographically order the arguments found in the following table.
PNT The table of parameter names. Each formal parameter name is a string at the

offset indicated in the table above, terminated by a null character, and followed
by a 8−bit integer indicating its position in the list of formal parameters as
stated in the function definition.

ETC 2 The number of entries in the exception table.
LTC 2 The number of entries in the line number table.
ET ETC * 12 The Exception Table. Each entry in the exception mapping table consists of

three 32−bit integers. The first two entries specify a range of instructions in IL,
and the third specifies the instruction in IL that control should be transferred to
if an exception occurs at an instruction within that range. The start and end
addresses of ranges are inclusive. Ranges cannot overlap, and the exception
table is sorted by the start−of−range in increasing order.

LT LT*12 The Line Number Table. Each entry of the line number table consists of three
32−bit integers. The first two entries specify a range of instructions in IL, and
the third specifies the line number in the source code file to which that byte
code range corresponds. This information is used to generate informative
tracebacks for the programmer during debugging. Like the exception table, byte
code ranges may not overlap, and the line number table is sorted into increasing
order.

ANTC 2 This field specifies the number of entries in the Attribute Name Table.
ANOT ANTC*4 This specifies the offset of each attribute name in the Attribute Name Table.
ANT The table contains a list of ’\0’−terminated attribute names at the offset

specified in the attribute name offset table.
PC 4 The number of pickled objects in the pickle jar of this code object.
PJ The set of pickles for this code object. Each pickle must start at a 32−bit offset.

10

The format of an Indirection pickle is below. Indirection pickles are used when the range of normal pickle
jar offsets would be insufficient.
Field
Name

Size Description

TYPE 4 The value in this field must be 22.
ADDRESS 4 The offset of the pickled object from the start of the pickle jar of this code

object.

11

Translating Python to Mamba Assembler

The following translations are not intended to be exhaustive so much as illustrative. They cover the most
commonly used constructs in a Python programmer’s repertoire. Unimportant sections of code will be
represented by an ellipsis in the following Python and assembler listings.

Translation of Python Expressions

Simple Literals

Literal constants such as1, 2.2 , 3L, 4J and "Hello, World" are represented as pickles inside the
pickle jar of the code object that they appear in using the format given in theFile Formatsection. They are
unpickled into full−fledged Python objects by theNEW instruction whenever their values are required in a
Python program. In order to alleviate the burden of dealing with numeric offsets into the pickle jar, the
assembler provides symbolic addresses for pickles by means of the directive

pickle−name: type value

which instructs the assembler to insert a pickle in the required format into the pickle jar of any code object
which references it with the pseudo−instruction

UNPICKLE pickle−name, R destination register

UNPICKLEis a synonym for theNEWinstruction when its task is to unpicklepickle−nameand to place the
resulting object into register Rdestination register . We use the assembler directive

ASSEMBLE ndpc dpc s1 s2
PARAMETERS name1, name2, ..., namen

body of code object
END

to represent a code object, wherendpcanddpcare non−negative integers specifying the number of formal
parameters which have default arguments and the number of formal parameters that do not have default
arguments, respectively.S1 and S2 indicate whether the code object has* and ** formal parameters,
respectively. They can be either zero or one. ThePARAMETERSspecification contains an ordered list of
formal parameter names. The list of pickles for a code object typically follows theASSEMBLE... END
directive describing the code object.

Compound Literals

Compound literals such as[1,2,3,4,5] are not represented as pickled objects but must be built at run−
time. The following code creates the compound literal [1,2,3,4,5] :

ASSEMBLE ...
NEW LIST, L2
GETATTR L2, "append", L3 # Get the append method

UNPICKLE T0, L5
CALL L3, 1, L4, 0 # Append a 1 at the end
UNPICKLE T1, L5
CALL L3, 1, L4, 0 # Append a 2 at the end
...

END

12

T0: INTEGER 1
T1: INTEGER 2
...

Dictionary constants can be created similarly. First, an empty dictionary is created. Then the
__setitem__ function is retrieved from it and is called with each key−value pair that should be in the
dictionary. Tuples are created by first making a list with the desired tuple components, and then calling the
list’s __tuplify__ function, which will transform the list object into a tuple.

Binary Arithmetic

Binary arithmetic operators are translated with theOP instruction.OP implements in−place operations as
well as the regular kind. All aspects of Python arithmetic operations such as the coercion of operands and
fall−backs to reverse operations in the absence of standard operations are implemented by this instruction.
The expression x + y is translated as

OP add, R x, R y, R r

WhereRx is the register containingx , Ry is the register containingy , andRr is the register which should
contain the result. They expression x += y is translated as

OP iadd, R x, R y, R r

It is important to note that a result register is required even for the in−place operation because there is no
guarantee that objectx supports in−place addition. If it does not, the instruction would fall back to
"normal" addition and possibly even to reverse addition, in the absence of support for "normal". The result
would then be placed in Rr .

Unary Arithmetic

Unary arithmetic operations are translated by using function calls. For example the expression−x is
translated as

GETATTR Rx, "__neg__", R r

CALL Rr , 0, R r , 0

Here the GETATTR instruction retrieves the negation function ofRx into Rr. A CALL is made to the
negation function and the result is placed inRr. Rr now contains the required value. It should be noted that
the original value of the object inRx has not been modified. The operations+ and~ are translated similarly
using the attribute names__pos__ and __invert__ respectively. Please refer toSection 3.3of the
Python Language Specification for details.

Comparisons

The GETATTRS instruction is used to translate Python comparison statements. For example, the expression
x < y is translated as

GETATTRS Rx, <, R x

MOVE Ry, R x+1

CALL Rx, 1, R x, 0

The GETATTRSinstruction returns a method which should be called with the second operand of the
comparison. The other comparison operations are supported similarly. TheGETATTRSinstruction ensures
that rich comparison methods such as__lt__ are used if they are provided by the given object.
Otherwise, the comparison method__cmp__ is used. Each object in the virtual machine has an implicit
__cmp__ method which compares objects by address.

13

Identity

The Python language provides theIS operator to test whether two objects have the same identity. This
operation is implemented by comparing the addresses of the two objects. The address of an object is
obtained by calling its__addr__ function, which returns anInteger containing the object’s address.
Once two Integer addresses have been obtained, they may be compared for equality using the
GETATTRS instruction as shown above.

Containment

The Python language provides theIN operator to test whether one object is contained in another. The
__contains__ member function is used to implement this test. In order to check if objectx contains
object y , the __contains__ function is extracted from objectx and then called with objecty as its
argument. A non−zero value is returned if objectx contains objecty , zero otherwise. TheNOT IN
expression can be translated by inverting the return value.

Logical Operations

The truth value of an object can be determined by calling a function to determine its value; the correct
function to call is found using theGETATTRSinstruction. By using conditional jumps and theOP
instruction with the and and or operations, short−circuiting logical operations can be performed.

Slicing

Slicing operations are implemented via an object’s__getslice__ , __setslice__ and
__delslice__ methods. For example to compile the codex[i:j] = k the following translation is
used.

GETATTR Rx, "__setitem__", R r

MOVE R i , R r+1

MOVE Rj , R r+2

MOVE Rk, R r+3

CALL Rr , 3, R r , 0

Code to retrieve and delete slices can be obtained by using__getslice__ and __delslice__
respectively.

Indexing

Indexing is a special case of slicing which uses the functions__getitem__ , __setitem__ , and
__delitem__ instead of __getslice__ , __setslice__ and __delslice__ .

Qualification

The qualification operation is built directly into the virtual machine in the form of the GETATTR and
SETATTR instructions. When qualification occurs in a non−assignment context, the expressionx.y is
translated asGETATTR Rx, "y", R r . When used in the context of an assignment such asx.y = z ,
the SETATTR instruction is used: SETATTR Rx, "y", R z.

14

Function Calls

One step in the compilation of a function call that needs to be elucidated is the passing of keyword
arguments. To do this, aNamespace is created containing a mapping of argument names to values. For
example, to compile the function callfunc(1,x=2,y=3) , a namespace object is created and populated
with the required values.

GETATTR L0, "func", L2 # Retrieve "func" from globals
UNPICKLE T1, L3 # Assume pickle T1: INTEGER 1
NEW Namespace, L4
UNPICKLE T2, L4 # Assume pickle T2: INTEGER 2
SETATTR L2, "x", L4
UNPICKLE T3, L4 # Assume pickle T3: INTEGER 3
SETATTR L2, "y", L4

Now the first argument is in L3 and the namespace containing the second and third arguments is in L4. We
can now call the function with the instruction

CALL L2, 1, L2, 1

This will call the function inL2 with one positional argument and will put the result of the call inL2. The
fourth operand to theCALL instruction indicates that aNamespace object containing the value of
keyword arguments is provided in the register immediately following the registers containing the positional
arguments (in this example, the keyword argument is in register L3).

Translation of Python Statements

Assignment

Let us assume that x and y are local variables and that we want to translate the expression code x = y .
The following translation is used:

GETATTR L1, "y", L2
SETATTR L1, "x", L2

If x andy are global variables thenL0 can be used instead ofL1. If x is global andy is local thenL0 can
be used instead ofL1 in theSETATTRinstruction. Otherwise, ifx is local andy is global thenL0 can be
used instead ofL1 in the GETATTRinstruction. Compound assignments such asx, (a,b) = y,
(c,d) must be decomposed into simpler assignments and then translated using the schema given above.
More complicated expressions involving slicing and indexing can be translated using the__setslice__
and __setitem__ methods of the objects which are being assigned to.

Printing

To translate the statementPRINT exp, whereexpis any Python expression, the expressionexpshould first
be evaluated into a register. The__repr__ method of the result should then be called. It will return the
required output as aString object. Theprint method of theString object returned should then be
called, which will print the string to standard output.

String Formatting

In Python, string formatting is performed with the%operator. This operation can be translated exactly as if
it were a binary arithmetic operation involving the % operator by using the OP mod instruction.

15

String Representation

The "official" representation of an object can be obtained by calling its__repr__ method. The
"unofficial" representation can be obtained by calling the __str__ method of the object.

If−Elif−Else and While

These translations require the use of the__nonzero__ method to ascertain the truth value of an
expression.

For−In

To translate this construct, the compiler should generate code to obtain the length of the container being
iterated over by calling its__len__ method. The__getitem__ method of the container should then be
called with each value from 0 up to the value returned by the call to__len__ in order to obtain each item
held in the container.

Try−Except

To compile atry statement, the starting and ending addresses of the virtual machine instructions covered
by the translated try statement must be entered into the exception table, along with the address of the code
to transfer control to in the event of an exception. The assembler alleviates the tedium of calculating these
offsets by providing the TRY directive which does this. For example, the Python code

try:
Exception raising code

except ...:
Exception handling code sequence 1

except ...:
Exception handling code sequence 2

is translated

TRY EXCEPTION_HANDLER1
translation of exception raising code

No exceptions were encountered. Jump over handlers.
JUMP AFTER_EXCEPTION_HANDLERS

END

EXCEPTION_HANDLER_1:
Try to match the exception.
If match fails, try second handler
HANDLE ..., EXCEPTION_HANDLER2

The match succeeded.
translation of exception handling sequence 1
JUMP AFTER_EXCEPTION_HANDLERS

EXCEPTION_HANDLER_2:
Try to match the exception.
If match fails, reraise the exception.
HANDLE ..., RERAISE_EXCEPTION

The match succeeded.
translation of exception handling sequence 2
JUMP AFTER_EXCEPTION_HANDLERS

16

RERAISE_EXCEPTION
No handler matched. Reraise the current exception.
RAISE G61, G62

AFTER_EXCEPTION_HANDLERS:

TheTRYdirective will insert the triple containing the address of the first instruction after the openingTRY
EXCEPTION_HANDLER, the address of the last instruction before the enclosingEND, and the address of
the first instruction after the labelEXCEPTION_HANDLERinto the exception table for the containing code
object. The TRY directive can be nested.

As illustrated above, the address that control is transferred to usually contains aHANDLEinstruction which
attempts to match a thrown exception to a particularClass , Instance or String object. If the
exception matches, according to thePython Language Specification, execution continues at the next
instruction, which contains the handler for the exception. Otherwise, theHANDLEinstruction transfers
control to another address which usually contains anotherHANDLEstatement that attempts to match the
exception. The lastHANDLEinstruction in such a chain usually transfers control to aRAISE instruction
which uses registers G61 and G62 as arguments, thereby re−raising the current exception. See the Instruction
Set Reference for a sample translation.

Function Definitions

Let us assume that the following function definition is found at the global scope.

def sum(a=1, b=1):
return a+b

To compile a function definition, a pickled code object should first be created with the appropriate data as
described in the sectionCode Objects. At run−time, the code object is unpickled and wrapped in a
Function object. The default values for formal parameters and the global namespace for the function are
then set up for theFunction object. The following translation shows how the above Python code listing
could be compiled.

ASSEMBLE ...
NEW Function, L2 # Create a new function

Set up the __im_code__ attribute of the Function object
UNPICKLE C0, L3 # Unpickle the code object
SETATTR L2, "__im_code__", L3 # Link to it

Set up the __globals__ attribute of the Function object
SETATTR L2, "__globals__", L0 # Use globals of this module

Set up the __defaults__ attribute
NEW List, L3 # Create the defaults list
GETATTR L3, "append", L4
UNPICKLE T1, L6 # Assume pickle T1: INTEGER 1
CALL L4, 1, L5, 0 # Append 1
UNPICKLE T2, L6 # Assume pickle T2: INTEGER 2
CALL L4, 1, L5, 0 # Append 2
SETATTR L2, "__defaults__", L3

Now link the function name to the function object
SETATTR L0, "sum", L2

END

C0: ASSEMBLE 0 2 0 0
OP add, L2, L3, L2
RETURN L2

END

17

Class Definitions

To compile a class definition, aClass object should first be created. The list of base classes should then
be created and set as the value of the__bases__ attribute. Finally, all objects declared with it must be
compiled and made part of the class’ namespace. In the following program we shall assume thatBase1
and Base2 are global variables.

class Derived(Base1, Base2):
...
data = 1
...

We may translate this class definition as

NEW Class, L2 # Create a new Class
NEW List, L3 # Create a new List
GETATTR L3, "append", L4
GETATTR L0, "Base1", L6 # Get Base1
CALL L4, 1, L5, 0 # Append Base1
GETATTR L0, "Base2", L6 # Get Base2
CALL L4, 1, L5, 0 # Append Base2
SETATTR L2, "__bases__", L3 # Set the __bases__ attribute
Now compile the rest of the class
...
UNPICKLE T0, L3 # Assume T0: INTEGER 1
SETATTR L2, "data", L3
...

Note that the last instruction setsdata as an attribute of the object inL2 − the class that was just created −
not as an attribute of the global or local namespaces. It should also be noted that when functions declared
within a class are compiled that their__globals__ namespace isnot the class in which they are
compiled but the global namespace of the module.

Deletion

The del statement is supported directly by the virtual machine. Suppose that we want to delete the local
variable x using the Python statement del x . The translation is

DELATTR L1, "x"

If x were a global variable the DELATTR statement would use L0 instead of L1.

18

Example Translation: Modules

This example was chosen because it indicates how classes, class member data, function definitions with
default values for parameters, exception handling, if−elif−else and while statements should be compiled.

class ValueNotFoundError :
pass

class Tree:
def __init__(self):

self.root = None

def value(self, key, exception=ValueNotFoundError):
Start at the root
current = self.root

Proceed to search
found = 0
while 1:

if current == None:
break

elif current.key < key:
current = self.left

elif current.key > key:
current = self.right

else:
found = 1
break

Return value found or raise exception
if found:

return current.value
else:

raise exception

class AVLTree(Tree):
def __init__(self):

Tree.__init__(self)

def insert(self, key, value):
code to insert key, with balancing

The main program
try:

names = AVLTree()
names.insert(1, "One")
names.insert(2, "Two")
name = names.value(3)

except ValueNotFoundError:
print ‘ValueNotFoundError‘
raise

In the following translation theENTRYdirective is introduced. This directive tells the assembler that the
pickle name that follows it is the main pickle in the assembler file. When the byte code file produced by the
assembler is imported, the code object designated by the ENTRY directive will be executed.

19

ENTRY MAIN_CODE_OBJECT
MAIN_CODE_OBJECT:

ASSEMBLE 0 0 0 0
PARAMETERS

class ValueNotFoundError
NEW Class, L2
SETATTR L0, "ValueNotFoundError", L2

class Tree:
NEW Class, L2
SETATTR L0, "Tree", L2

def __init__(self):
NEW Function, L3
UNPICKLE C1, L4
SETATTR L3, "__im_code__", L4
SETATTR L3, "__globals__", L0
NEW List, L4
SETATTR L3, "__defaults__", L4
SETATTR L2, "__init__", L3

def value(self,key,exception=ValueNotFoundError):
NEW Function, L3
UNPICKLE C2, L4
SETATTR L3, "__im_code__", L4
SETATTR L3, "__globals__", L0
NEW List, L4
GETATTR L4, "append", L5
GETATTR L0, "ValueNotFoundError", L6
CALL L5, 1, L5, 0
SETATTR L3, "__defaults__", L4
SETATTR L2, "value", L3

class AVLTree(Tree):
NEW Class, L2
NEW List, L3
GETATTR L3, "append", L4
GETATTR L0, "Tree", L5
CALL L4, 1, L4, 0
SETATTR L2, "__bases__", L3
SETATTR L0, "AVLTree", L2

def __init__(self):
NEW Function, L3
UNPICKLE C3, L4
SETATTR L3, "__im_code__", L4
SETATTR L3, "__globals__", L0
NEW List, L4
SETATTR L3, "__defaults__", L4
SETATTR L2, "__init__", L3

def insert(self,key,value):
NEW Function, L3
UNPICKLE C4, L4
SETATTR L3, "__im_code__", L4
SETATTR L3, "__globals__", L0
NEW List, L4
SETATTR L3, "__defaults__", L4
SETATTR L2, "insert", L3

Assemble the try statement
TRY S0

names = AVLTree()
GETATTR L0, "AVLTree", L2

20

CALL L2, 0, L2, 0
SETATTR L0, "names", L2

names.insert(1, "One")
GETATTR L0, "names", L2
GETATTR L2, "insert", L2
UNPICKLE T1, L3
UNPICKLE T2, L4
CALL L2, 2, L2, 0

names.insert(2, "Two")
GETATTR L0, "names", L2
GETATTR L2, "insert", L2
UNPICKLE T3, L3
UNPICKLE T4, L4
CALL L2, 2, L2, 0

name = names.value(3)
GETATTR L0, "names", L2
GETATTR L2, "value", L2
UNPICKLE T5, L3
CALL L2, 1, L2, 0
SETATTR L0, "name", L2
JUMP AFTER_HANDLER

S0:
print ‘ValueNotFoundError‘
GETATTR L0, "print", L2
GETATTR L0, "ValueNotFoundError", L3
GETATTR L3, "__repr__", L3
CALL L3, 0, L3, 0
CALL L2, 1, L2, 0

AFTER_HANDLER:
The global namespace for the module is returned
RETURN L0

END

T1: INTEGER 1
T2: STRING "One"
T3: INTEGER 2
T4: STRING "Two"
T5: INTEGER 3

Assemble method Tree.__init__
C1: ASSEMBLE 1 0 0 0

PARAMETERS self

Assemble self.root = None
GETATTR L0, "None", L3
SETATTR L2, "root", L3 # L2 contains parameter 1
RETURN L3

END

Assemble method Tree.value
C2: ASSEMBLE 2 1 0 0

PARAMETERS self key exception

current = self.root
GETATTR L2, "root", L5 # L2 contains parameter 1
SETATTR L1, "current", L2

found = 0
UNPICKLE C2_1, L5
SETATTR L1, "found", L5

21

while 1:
REP:

if current == None:
GETATTR L1, "current", L5
GETATTRS L5, ==, rL5
GETATTR L0, "None", L6
CALL L5, 1, L5, 0

break
JNZ L5, OUT

elif current.key < key
GETATTR L1, "current", L5
GETATTR L5, "key", L5
GETATTRS L5, <, L5
MOVE L3, "key", L6 # L3 contains parameter 2
CALL L5, 1, L5, 0

Jump to next test if test failed
JZ L5, TEST2

current = self.left
GETATTR L2, "left", L5 # L2 contains parameter 1
SETATTR L1, "current", L5
JUMP BOTTOM

TEST2:
elif current.key > key
GETATTR L1, "current", L5
GETATTR L5, "key", L5
GETATTRS L5, >, L5
MOVE L3, "key", L6
CALL L5, 1, L5, 0
JZ L5, TEST3

current = self.right
GETATTR L2, "right", L5
SETATTR L1, "current", L5
JUMP BOTTOM

TEST3:
else: found = 1
UNPICKLE C2_1, L5
SETATTR L1, "found", L5
break
JUMP OUT

Bottom of while loop
BOTTOM:

JUMP REP

OUT: # End of while loop

if found:
GETATTR L1, "found", L5
GETATTR L5, "__nonzero__", L5
CALL L5, 0, L5, 0
JNZ L5, NOT_FOUND

return current.value
GETATTR L1, "current", L5
GETATTR L5, "value", L5
RETURN L5

22

NOT_FOUND:
else: raise exception.
Use the ".raise" function to derive the operands to RAISE
by setting up the global exception data registers G60 and G61.
GETATTR L0, ".raise", L5
MOVE L4, L6
CALL L5, 0, L5, 1
RAISE G60, G61

END

Assemble method AVLTree.__init__
C3: ASSEMBLE 1 0 0 0

PARAMETERS self

Assemble Tree.__init__(self)
GETATTR L0, "Tree", L3
GETATTR L3, "__init__", L3
MOVE L2, L4 # L2 contains parameter 1
CALL L3, 1, L3, 0

GETATTR L0, "None", L3
RETURN L3

END

C4: ASSEMBLE 3 0 0 0
PARAMETERS self key value
...

END

23

Example Translation: The Function Call Mechanism

The following example illustrates the function call mechanism from the point of view of the caller and the
callee. The function called will have positional parameters, default−valued parameters, a * parameter, a **
argument, and tuple parameters. The call to the function will pass positional parameters, keyword
parameters, a * argument, and a ** parameter. The function, once called, will access keyword parameters,
access the * and ** parameters, and unpack tuple parameters. Assume the following definition:

def function(a,b,c,(d,e,f),g,h=1,i=2,*j,**k):
function body

Suppose that the function is called with the following code:

function (1, g=2, i=3, *(4,5,(6,7,8)), **{"h":9, "j":10})

The assembler code for function definition is:

FUNCTION:
ASSEMBLE 5, 2, 1, 1
There are 5 positional parameters, 2 default−valued parameters,
a * parameter, and a ** parameter

PARAMETERS a b c d e f g h i j k
The parameter names

Parameters a, b, and c are in L2−L4 respectively.
Parameters g,h,i,j, and k are in L5−L9 respectively.

Unpack the tuple that is in L4 to obtain parameters d, e, and f.
We shall store parameters d, e, and f in L10−L12 respectively.

GETATTR L4, "__getitem__", L13

Get the first item
UNPICKLE T0, L15
CALL L13, 1, L14, 0
MOVE L14, L10

Get the second item
UNPICKLE T1, L15
CALL L13, 1, L14, 0
MOVE L14, L11

Get the third item
UNPICKLE T2, L15
CALL L13, 1, L14, 0
MOVE L14, L12

code for function body
END
T0: INTEGER 1
T1: INTEGER 2
T2: INTEGER 3

The main issue demonstrated by the above example is tuple parameter unpacking. There are other ways to
unpack tuple parameters. For example, parameters after the tuple parameter can be moved forward, and the
unpacked value inserted in front of them so that the unpacked values maintain their order in the list of
parameters. Another alternative is to create local variables to hold the values of unpacked tuple parameters.

24

We now show the assembler code for the function call:

GETATTR L0, "function", L2

Set up the sole positional argument in L3
UNPICKLE T1, L3

Set up the namespace containing arguments g and I in L4
NEW Namespace, L4
UNPICKLE T2, L5
SETATTR L4, "g", L5
UNPICKLE T3, L5
SETATTR L4, "h", L5

Create the tuple (4,5,(6,7,8)) in L5
NEW List, L5
GETATTR L5, "append", L6
UNPICKLE T4, L8
CALL L6, 1, L7, 0
UNPICKLE T5, L8
CALL L6, 1, L7, 0
Create the tuple (6,7,8) in L8
NEW List, L8
GETATTR L8, "append", L9
UNPICKLE T6, L11
CALL L9, 1, L10, 0
UNPICKLE T7, R11
CALL L9, 1, L10, 0
UNPICKLE T8, R11
CALL L9, 1, L10, 0
GETATTR R8, "__tuplify__", L9
CALL L9, 0, L9, 0
Join (6,7,8) and then create the tuple from the list
CALL L6, 1, L7, 0
GETATTR L6, "__tuplify__", L6
CALL L6, 0, L6, 0

Create the dictionary containing parameter h and j in L6
NEW Dictionary, L6
GETATTR L6, "__setitem__", L7
UNPICKLE T11, L9
UNPICKLE T9, L10
CALL L7, 2, L8, 0 # Set up parameter h
UNPICKLE T12, L9
UNPICKLE T10, L10
CALL L7, 2, L8, 0 # Set up parameter j

Make the call
CALL L2, 1, L2, 7

T1: INTEGER 1
T2: INTEGER 2
...
T10: INTEGER 10
T11: STRING "h"
T12: STRING "j"

The value 7 for the fourth parameter to the call requires some explanation: bit 0 is set to indicate the
presence of a * parameter, bit 1 the presence of the ** parameter, and bit 2 the presence of a namespace of
keyword arguments following the positional parameter.

25

Instruction Set Reference

1. GETATTR

Description

Given an object and an attribute name, retrieve the corresponding attribute value. If the given
attribute name is not found, an AttributeError exception is thrown.

Form

GETATTR object, attribute name, attribute value

Parameters

1. object is an 8−bit unsigned integer indicating the register which references the object from
which the attribute−value will be retrieved.

2. attribute−nameis a 14−bit index into the current attribute name table specifying the string
which contains the attribute name.

3. attribute−valueis an 8−bit unsigned integer indicating the register into which a reference to
the retrieved attribute value should be stored.

Semantics

The two main algorithms used by this instruction are:
1. the algorithm used to find the attribute value;
2. the algorithm used to bind the attribute value (if it was found and binding is required).

Algorithm 1: Finding the attribute value:
The attribute value lookup operation depends on the type of object in which theGETATTR
instruction is searching:

1. Objects of type None, NotImplemented , Ellipsis , Integer , Long ,
Float , Complex , String , Tuple , List , Dictionary , Slice , Function ,
Code, Method , Frame , Traceback , and Type have a trivial attribute value
lookup procedure − an <attribute name, attribute value> pair is either part of the
object’s namespace or it is not. If the attribute name is not found in the namespace
then no other objects are searched, the search fails, and anAttributeError
exception is thrown. Otherwise, if the attribute name is found in the namespace, the
corresponding attribute value is returned.

2. Objects of typeClass , Instance , Module , and Namespace have more
elaborate lookup schemes:

1. Class : If an attribute name is not found in a class object, its base class(es)
must be searched. The list of base classes must be given in the__bases__
attribute. If this attribute does not exist, or if its value is not aTuple object
where each component is aClass object, an AttributeError
exception is thrown. Each class in the tuple of base classes is searched in
order, with the same algorithm applied if the given attribute name is not
found in a base class. Hence, a depth−first search of the class tree for a given

26

class is performed. The first attribute value corresponding to the given
attribute name is retrieved. Two or more base classes may contain an
attribute with the same name, but the attribute value corresponding to the
attribute name in thefirst class searched will be returned. This means that
the order in which base class are specified in the__bases__ tuple
matters.

2. Instance: If an attribute name is not found in an instance object of a
class, its class is then searched. The class (which was called to create an
instance) must be given by the instance’s__class__ attribute. This
object must be of typeClass . If the attribute is not found in the class
specified by __class__, that class is searched using the depth−first
algorithm given above.

3. Module: If an attribute name is not found in a module object, the set of
built−in objects of the module is then searched. The object containing the
module’s built−in objects is given by the the module’s__builtins__
attribute. This object must be aNamespace object. It is searched with the
algorithm given below.

4. Namespace: SinceNamespace objects are used to implement the local
namespace of a function, if an attribute name is not found in a namespace
object, the object specified by its__globals__ attribute is searched. The
__globals__ attribute must be an object of typeModule , and is
searched with the aforementioned algorithm. It is not compulsory for a
namespace object to have a __globals__ attribute.

Since the search algorithm for classes, instances, modules and namespace object, result
in other objects being searched when the given attribute name is not found, it is useful to
differentiate between the object in which the search started and the object in which the
given attribute name was found (i.e., the object in which the search ended).

1. In the following discussion when we use the phrase "via anobject", we
mean thatobject is simply the object in which the search started, not
necessarily the object in which the attribute name was found.

2. Furthermore, when we used the phase "inside anobject", we mean that
object is the object in which the attribute name search ended.

Algorithm 2: Binding the attribute value.
Assume that Algorithm 1 has executed and the attribute value has been located. We may now
classify the type of the attribute value into two mutually exclusive categories: function objects and
non−function objects.

1. Function objects are simply objects of the typeFunction (this category does not
include objects that can behave like functions, such as instances of classes which
have a __call__ method defined):

1. When aFunction is retrieved via a class instance but found inside a base
class of the instance, the function is wrapped inside a boundMethod object
which binds the first parameter of the function to the instance. TheMethod
object is returned.

2. When aFunction is retrieved via a class, the function is wrapped inside
an unboundMethod object which binds the type of the first parameter to
the class via which it was retrieved. This ensures that the unboundMethod

27

object is called with an instance of that class as its first parameter. The
Method object is returned.

3. When aFunction is retrieved via anInstance , but also found inside
that Instance , no boundMethod is created. The function is returned,
unadorned.

4. When aFunction is retrieved from aModule or Namespace, no bound
Method is created. The function is returned unadorned.

5. When a Function is retrieved from any other type of object, the
Function is wrapped inside a boundMethod object which binds the first
parameter to that object. The Method object is returned.

2. Non− function objects are not bound. Their values are simply returned as−is.

For more details, see the Python Language Specification.

Encoding

00xxxxxx xxxxxxxx <object> <attribute value>

 xxxxxx xxxxxxxx = 14−bit attribute−name.

Total instruction length: 4 bytes.

Example

TheGETATTRinstruction provides functionality for the Python . (dot) operator when it occurs in
a non−assignment context. Consider the following code:

currentTemperature = temperature.centigrade()

Let currentTemperature be a global variable andtemperature be a local variable which
is an instance of classTemperature , containing a functioncentigrade(self) . When
compiled, this would be:

GETATTR L1, "temperature", L2 # L1 contains local namespace
GETATTR L2, "centigrade", L2 # create a bound method object
CALL L2, 0, L2, 0 # Call bound method object;

return value in L2
SETATTR L0, "currentTemperature", L2

 # L0 contains global namespace

2. GETATTRS

Description

This instruction will locate the first of a sequence of attributes that a specified object possesses.

Form

GETATTRS object, attribute−sequence, attribute value

28

Parameters

1. object is an 8−bit integer indicating the register which contains an object in which the
attribute−name search should start.

2. attribute−sequenceis an 8−bit unsigned integer indicating an attribute name sequence which
is built into the virtual machine.

3. attribute valueis an 8−bit integer indicating a register in which to store the attribute value that
is found.

Semantics

Given an object and a sequence of attribute names, this instruction will perform the operation of
the GETATTRinstruction for the given object and each attribute name in the sequence, in the
order it appears in the sequence. If no attribute−name in the sequence is found, an
AttributeError exception is thrown. Otherwise, a reference to the attribute value
corresponding to the first attribute name found is returned.

The attribute sequence table is as follows:

Seq
No.

Name 1 Name 2 Name 3

0 __lt__ __cmp__ * __.d__lt__

1 __gt__ __cmp__ * __.d__gt__

2 __eq__ __cmp__ * __.d__eq__

3 __ne__ __cmp__ __.d__ne__

4 __ge__ __cmp__ * __.d__ge__

5 __le__ __cmp__ * __.d__le__

6 __nonzero__ __len__ __.d__len__

7 __str__ __repr__ __.d__repr__

If an attribute name marked with an asterisk (*) is found, its attribute value will not be returned
directly but will be wrapped inside a Function object, which calls__cmp__ and translates its
return values appropriately. This is essential in all cases except Sequence 3, in which__cmp__
returns 0 if the object compare equal, and non−zero otherwise. These values are in agreement with
the values which are returned by the rich comparison method__ne__ . Hence, no translation is
required for this case.

The__.d__ attributes refer to attributes that are present in all objects by default, which compare
objects by their identity. This is done to be compliant with Python semantics.

Encoding

10110100 < object> < attribute name sequence> <attribute value >

Total instruction length: 4 bytes.

Example

The GETATTRSinstruction is used to provide support for Python operations which allow fall−
back methods to be used, if present. Suppose that we want to translate the expressionx < y
where x and y are local variables.

29

We may translate this code as:

GETATTR L1, "x", L2
GETATTRS L2, <, L2
GETATTR L1, "y", L3
CALL L2, 1, L2, 0

3. SETATTR

Description

Given an object, an attribute name, and a value, this instruction will change the attribute value for
the given attribute name to the given value. This operation is called rebinding. If the given
attribute name is not found, it will create an<attribute name, attribute value>pair with the given
attribute name and attribute value in the object. This operation is called binding.

Form

SETATTR object, attribute name, attribute value

Parameters

1. object is an 8−bit value indicating the register which references the object in whose namespace the
binding/rebinding will occur.

2. attribute nameis a 14−bit index into the current attribute name table specifying the string which
contains the attribute name.

3. attribute value is an 8−bit value indicating the register which references the value to be
bound/rebound to the attribute name.

Semantics

Unlike theGETATTRinstruction which may search other objects for the attribute name, no such
search is employed by this instruction. The instruction modifies the namespace of the object given
by its first parameter.

To understand the conditions under which exceptions are thrown by this instruction, it is
important to know that objects of the virtual machine can be categorized in terms of the
modifiability of their namespaces. These categories are parameterized according to two criteria:
the mutability of the attribute names, and the mutability of attribute values:

Attribute−name−immutableobjects have a fixed set of attributes. It is illegal to bind values to
attribute names in objects of this type, if bindings for those attribute names do not already exist.

Attribute−value−immutableobjects do not allow the attribute values for objects to be changed.
(The attribute values are usually set up by the virtual machine to refer to built−in functions.)

Thus in terms of namespace modifiability, objects in the virtual machine can be partitioned into
three categories:

1. Attribute−name−immutable, attribute−value−immutable:
Integer , Long , Float , Complex , String , Tuple , Code, List , Dictionary ,
Ellipsis , Type , Slice , None, and NotImplemented.

2. Attribute−name−immutable, attribute−value−mutable:
Function and Method .

30

3. Attribute−name−mutable, attribute−value−mutable:
Class , Instance , Namespace, and Module .

If the namespace of an object is attribute−name−immutable and the instruction tries to bind a new
attribute in it, or if the namespace is attribute−value−immutable and the instruction tries to rebind
an already bound attribute name to a new value, an AttributeError exception will be thrown.

Encoding

01xxxxxx xxxxxxxx <object> <attribute value>

xxxxxxxxxxxxxx = 14 bit attribute−name.

Total instruction length: 4 bytes.

Example

Assume that the following Python code is inside a function:

global y
y = 1
x = 2

We may translate the above code as follows:

code to create a reference to the integer 1 in L2
SETATTR L0, "y", L2
code to create a reference to the integer 2 in L3
SETATTR L1, "x", L3

Recall that L0 and L1 point to the global and local namespace, respectively.

4. DELATTR

Description

Given an object and an attribute name, remove the <attribute name, attribute value> pair
associated with the given attribute name if such a pair exists, or raise anAttributeError
exception otherwise. The process of removing an <attribute name, attribute value> pair is called
unbinding.

Form

DELATTR object, attribute name

Parameters

1. objectis an 8−bit value indicating the register which references the object from whose namespace
the attribute should be unbound.

2. attribute nameis a 14−bit index into the current attribute name table specifying the string
containing the attribute name.

31

Semantics

The operation of this instruction depends on the modifiability ofobject’s namespace.
(Modifiability categories are discussed in theSETATTR instruction.) If the namespace is
attribute−name−immutable, an AttributeError exception will be raised.

Otherwise, the instruction will search for a <attribute name, attribute value> pair with the given
attribute name in the namespace of theobject. If no such pair is found, anAttributeError
exception is raised. Otherwise, the <attribute name, attribute value> pair found will be deleted.

The search algorithm for the <attribute name, attribute value> pair does not proceed into other
objects, if the search fails for the given object. TheDELATTRinstruction is only concerned with
object.

Encoding

10001000 <object> 00xxxxxx xxxxxxxx

xxxxxx xxxxxxxxx = 14−bit attribute name.

Total instruction length: 4 bytes.

Example

The purpose of this instruction is to provide functionality for Python’s del statement.

Example 1: Suppose that the following code occurs inside a function and that temp is a local
variable. We may translate the statement

del temp
as

DELATTR L1, "temp".

Recall that L1 contains the local namespace of a function.

Example 2: Suppose in the following code that Temperature is a class object and that
toCentigrade(self) is one of its methods. We may delete the method with the following
Python code:

del Temperature.toCentigrade

The code may be translated as:

Code to move Temperature into register n
DELATTR Rn, "toCentigrade"

5. CALL

Form
CALL callable object,

number of positional arguments,
flag indicating presence of keyword arguments,
flag indicating presence of * argument,
flag indicating presence of ** argument,
return value

32

Parameters

1. callable objectis an 8−bit unsigned integer indicating the register which contains a reference
to the object to be called. This object may be a function, a bound method, an unbound method,
a class, or a class instance.

2. number of positional argumentsis an 8−bit value containing the number of positional
arguments that are to be passed to the function designated by callable object.

3. return value is an 8−bit unsigned integer indicating the register which will hold the value
returned by the function.

4. keyword arguments flagindicates whether aNamespace object argument containing a
mapping from argument names to argument values is present. This argument is used to
represent arguments that are passed by using the syntax:

function(..., argname=argvalue, ...)
5. The * argument flagindicates whether an object representing a set of positional arguments

will be passed to the function. A tuple is usually used here. More generally, any object which
defines the__len__ and__getitem__ functions appropriately can be used here. Hence,
list, strings, dictionaries and classes instances which have the required function defined are
acceptable as arguments.

6. The** argument flag indicates whether a dictionary containing a mapping from arguments
names to argument values will be passed to the function.

Order of Arguments

The positional arguments must be placed in the first register after the return value register. They
must be placed in a set of consecutive registers, followed (optionally) by the register containing
the namespace object (containing the call’s keyword arguments), followed (optionally) by the
register containing the * argument, followed (optionally) by the register containing the **
argument.

Any register can be used to hold the reference to the callable object.

Semantics

The first stage of the operation of this instruction is function extraction. If the callable object is a
an Instance , the __call__ method is retrieved from it. If no such method is present, an
AttributeError exception is raised. If the callable object is aClass , the __init__
method is retrieved from it. As withInstance s, if this operation fails, anAttributeError
is thrown. If the callable object is a bound method, the function associated with it is retrieved from
the __im_func__ attribute and the first parameter is retrieved from the__im_self__
attribute. However, if the callable object is an unbound method, the first parameter is not retrieved
from __im_self__ but a check is performed to ensure that the first parameter passed (explicitly
via the CALL instruction) is a sub−class of the class referenced by the__im_class__
parameter.

Parameter setup is done in accordance with thePython Language Specification.In the callee,
incoming parameters are placed in a contiguous set of registers beginning at registerL2. All
positional parameters are placed first, followed (optionally) by the * parameter if the function
accepts one, followed (optionally) by the ** parameter if the function accepts one. The *
parameter will be a Tuple , and the ** parameter will be a Dictionary .

When a function is called, a new local register set will be created for it. The registers will form a
consecutive range starting atL0 (register 64). RegistersL0 andL1 are reserved for the global and
local namespaces, respectively. As soon as a function call begins,L0 is set to point to the object
referenced by its__globals__ attribute. If the__globals__ attribute is not present, it is

33

assumed that the function has no global variables, andL0 is set toNone. A local namespace is
then set up for the function inL1. The local namespace is also modified to contain an attribute
__globals__ which references the object referenced byL0. Hence, if an attribute name is not
found during a search of the local namespace, the search will proceed to the globals, in
accordance with the scoping rules of Python.

Finally, the code object containing the byte−code body of the function is retrieved via the
__im_code__ attribute. The instructions are then interpreted.

Encoding

10000f 1f 2f 3 <callable objects> <positional argument count> <return value>

f1 = 1, if keyword arguments are present, 0 otherwise.
f2 = 1, if a * argument is present, 0 otherwise.
f3 = 1, if a ** argument is present, 0 otherwise.

Total instruction length: 4 bytes

Example

Example 1: (From the perspective of the caller). Suppose a reference to a function declared as
def function(a,b,c,*e,*f) is contained inL6, and we want to want to compile the
function call expressionfunction(1, 2, c=3, d=4, *x, **y) . Let us further assume
that x andy are local variables and that we want the result inL7. We may translate the code as
follows:

First set up the parameters starting in register 72
UNPICKLE T0, L8 # assume pickle T0: INTEGER 1
UNPICKLE T1, L9 # assume pickle T1: INTEGER 2

Now set up the namespace
NEW Namespace, L10

Put c = 3 in the namespace
UNPICKLE T2, L11 # assume pickle T2: INTEGER 3
SETATTR r74, "c", L11

Put d = 4 in the namespace
UNPICKLE T3, L11 # assume pickle T3: INTEGER 4
SETATTR L10, "c", L11

Place *x and *y
GETATTR L1, "x", L11
GETATTR L1, "y", L12

Make the call
CALL L6, 2, L7, 7

Example 2: (From the perspective of the callee). Suppose that we are compiling a function whose
signature is def function(a,b,c,d,*e,*f) . Then, when this function is called,
parameters a thru f can be accessed in registers L2 through L8 respectively.

34

6. RETURN

Description

Return a value from a function.

Form

RETURN <return value>

Parameters

Return valueis an 8−bit unsigned integer indicating the register which a reference to the object
which should be returned as the return value of the function.

Semantics

This instruction will place the specified object from the callee and return it in the caller’s register
designated to hold the return value by the CALL instruction which invoked the function.

It will also restore, upon return, the register set of the calling function.

Encoding

10001100 00000000 00000000 <return value>

Total instruction length: 4 bytes

7. RAISE

Description

Raise an exception.

Form

RAISE first exception object, second exception object

Parameters

Both parameters are 8−bit unsigned integer values which indicate registers.

Semantics

The RAISE instruction raises an exception with the values referenced by first exception object and
second exception object as the primary and secondary values of the exception.

When an exception is raised, the virtual machine tries to locate code that will handle the
exception, using the algorithm below.

35

Let IP be the address of the instruction raising the exception
Loop

If there is a range in the current exception table containing IP
Jump to the instruction associated with the range

Otherwise
Destroy the current function invocation; the new current exception
table is now the caller’s

Encoding

10010000 00000000 <first exception object > <second exception object >

Total instruction length: 4 bytes.

8. HANDLE

Description

This instruction attempts to match an exception which has been thrown by theRAISE instruction
or by the virtual machine. The matching algorithm is given below. If the matching fails the
instruction pointer will be set to the location specified bylabel. The purpose of the label is to
jump to anotherHANDLEstatement (the usual case), or to jump to aRAISE statement which will
repropagate the exception after all attempts to match it have been exhausted.

Form

HANDLE object, label

Parameters

1. object is an 8−bit unsigned integer which indicates the register containing the object which
will be matched against the current exception.

2. label is a 16−bit signed relative offset which indicates the location that the code should branch
to, if the match fails.

Semantics

The HANDLE instruction uses the following algorithm to match an exception:

If object is a string
If the primary exception datum (the object in G60) is a string

Compare the address of the two objects for equality
If they do not compare

Control is transferred to label
Otherwise

Control is transferred to label
Otherwise, if object is a class object

If the secondary exception datum (the object in G61) is a class object
If object is not a superclass of the secondary exception datum

Control is transferred to label
Otherwise

Control is transferred to label
Otherwise

Control is transferred to label

36

Encoding

10010100 <object> <16−bit signed offset>

Total instruction length: 4 bytes

Example

Suppose we want to translate the following Python code:

try:
code which might raise an exception

except TypeError:
code which handles a TypeError

except AttributeError:
code which handles an AttributeError

The code is translated:

TRY H1
translation of code which might raise an exception

END
JUMP OVER
H1:

GETATTR L0, "TypeError", L2
HANDLE L2, H2
translation of code which handles a TypeError
JUMP OVER

H2:
GETATTR L0, "AttributeError", L2
HANDLE L2, REPROPAGATE
translation of code which handles an AttributeError
JUMP OVER

REPROPAGATE:
RAISE G60, G61

OVER:

9. MOVE

Form

MOVE source register, destination register

Parameters

Source registerand destination registerare two 12−bit unsigned integers which designate
registers.

As a result of the operands being 12 bits each, each operand of this instruction can access a total
of 4096 registers, in contrast to the 256 registers that other instructions can access.

Semantics

This instruction copies the reference contained insource registerinto thedestination register; the
contents of the destination register are the same as that of the source register following the
execution of this instruction. Hence, this is a non−destructive operation.

37

Encoding

10011000 <source register12> <destination register12>

Total instruction length: 4 bytes.

10. JUMP

Form

JUMP offset

Parameters

offset, a 24−bit signed relative offset indicating an instruction to which control should be
unconditionally transferred.

Semantics

This instruction transfers control to the the given instruction by adding the given offset, less one,
to the current instruction pointer.

For example, a jump instruction with an offset of zero is a no−op, and a jump instruction with an
offset of −1 is an infinite loop, since it jumps back to the current instruction.

Encoding

10011100 <24−bit signed relative address>

Total instruction length: 4 bytes.

11. Jcond

Description

Each of these instructions will jump to the given address if the object referenced by the given
register satisfies a specified condition. The conditions are Z, NZ, A, NA, B, NB.

Form

Jcond <test value > <address>

Parameters

1. test value, an 8−bit unsigned integer indicating a register which contains a reference to an
object integer object.

2. address, a 16−bit relative offset, to which control will be transferred if the referenced object
satisfies the jump condition.

38

Semantics

Code Meaning Condition
Z Jump if zero Value == 0
NZ Jump if nonzero Value != 0
A Jump if above Value > 0
NA Jump if not above Value <= 0
B Jump if below Value < 0
NB Jump if not below Value >= 0

The referenced object must be of typeInteger . If the integer value contained in the object
satisfies the given condition, control is transferred to the given address. If the condition is not met,
execution resumes at the instruction immediately following the Jcond. If the given object is not an
integer, a TypeError exception is raised.

Encoding

JZ 10100000 <test value> <address>
JNZ 10100100 <test value> <address>
JA 10100001 <test value> <address>
JNA 10100010 <test value> <address>
JB 10100011 <test value> <address>
JNB 10100100 <test value> <address>

Total instruction length: 4 bytes.

13. NEW

Description

Create a new object, or unpickle a pickled object into a full−fledged virtual machine object.

Form

NEW <offset>, <register>

Parameters

1. offsetis a 19−bit offset into the current pickle jar. Values ofoffsetgreater than 219−64−1 are
reserved, and denote new objects whose contents are not pickled. The values and their
corresponding object types are given below.

2. register is an 8−bit integer indicating the register which will hold the newly created object.

Semantics

Objects in the virtual machine may be classified into two categories based on their method of
creation − pickled and unpickled objects. Pickled objects are simple, atomic objects such as
Integer s, Long s, Float s, Complex es andString s whose representations are stored at
compile−time in an area of each function’s code object called the pickle jar. When one of these
objects is required to be incarnated at run−time, its offset in the pickle jar is passed to theNEW
instruction and the object is incarnated from its pickled representation. Non−pickled objects
(whose types are shown in the table below) are not stored in the pickle jar. They are created at
run−time from scratch. In order to create them, an offset between 219−64 and 219−64+21 is passed

39

to the NEW instruction. In both cases, pickled and unpickled objects are returned in the desired
register.

If an object greater than or equal to 219−64−1 is needed, an "indirection" pickled object can be
used.

Encoding

10101xxx xxxxxxxx xxxxxxxx register

xxx xxxxxxxx xxxxxxxx = 19−bit offset

Total instruction length: 4 bytes.

Offsets for non−pickled object types are given by the following table:

Type Offset
List 219−64−1 + 9
Dictionary 219−64−1 + 10
Function 219−64−1 + 12
Class 219−64−1 + 15
Namespace 219−64−1 + 21

14. IMPORT

Description

Import a module from a .pyc file.

Form

IMPORT module name, register

Parameters

1. module nameis a 14−bit offset (for consistency with other instructions) into the current
attribute name table which specifies a string containing the name of the module to be
imported. This instruction (ab)uses the attribute name table as a repository for string operands
to its module name parameter.

2. register is an 8−bit integer indicating the register which should hold the module object, after it
has been loaded.

Semantics

The IMPORT instruction will:

1. Open the named file.
2. Unpickle the (sole) code object inside it.
3. Wrap the code object inside a function object.
4. Call the function it has just created.

40

5. Put the object returned by the function into the specified register. It is the obligation
of the code inside the code object to return the global namespace of the module, if the
object put into register is to make any sense.

Encoding

10110000 <register> 00xxxxxx xxxxxxxx

xxxxxx xxxxxxxx = 14−bit offset

Total instruction length: 4 bytes.

Example

For example, suppose that we want to load the os module, so that we can write code to remove
the file .cshrc . We can do the following:

IMPORT "os", L2
GETATTR L2, "remove", L3

UNPICKLE FILE_NAME, L4
CALL L3, 1, L3, 0

FILE_NAME: STRING ".cshrc"

15. OP

Description

This instruction will perform a binary or in−place arithmetic operation. If necessary, operand
coercion and fall−back to reversed operation is performed.

Form

OPxxxxxx object1, object2, result

Parameters

1. object1 and object2 are 8−bit integers indicating registers which contain references to the
operands to be operated upon.

2. xxxxxx is a 6−bit integer which refers to the operation to be performed (see table below).
3. result is an 8−bit integer indicating a register in which the result is to be stored.

Semantics

When a binary operator is applied to its operands in Python, coercion of the operands may be
necessary before the required operation can be performed. The virtual machine performs operand
coercion and the required operation in one step via the OP instruction.

This instruction takes two operands pointed at byobject1andobject2and coerces them into two
objects of a "common" type (if necessary) using the coercion procedure specified in the Python
language reference. The result of the operation is returned in the result register.

This instruction is used to compile both ordinary operations and in−place operations.

41

Encoding

11xxxxxx <object1> <object2> <result>

xxxxxxx = a 6−bit integer indicating which operation should be performed.

Total instruction length: 4 bytes.

The operation field is encoded as follows:
afffff: where a = 0: if the operation is simple, e.g. __add__

a = 1: if the operation is in−place, e.g. __iadd__
and fffff indicates the basic operation given in the table below.

Operation Value
__add__ 0001
__sub__ 0010
__mul__ 0011
__div__ 0100
__mod__ 0101
__pow__ 0110

__lshift__ 0111
__rshift__ 1000

__and__ 1001
__xor__ 1010
__or__ 1011

42

Reference

van Rossum, G., and Drake, Jr., F. L. Python Reference Manual, Release 2.2 (December, 2001). Available
from http://www.python.org .

43

