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Abstract

The trend toward smaller botnets may be more danger-
ous than large botnets, in terms of large-scale attacks like
distributed denials of service. We examine the possibility
of “super-botnets,” networks of independent botnets that
can be coordinated for attacks of unprecedented scale. For
an adversary, super-botnets would also be extremely ver-
satile and resistant to countermeasures. As such, super-
botnets must be examined by the research community, so
that defenses against this threat can be developed proac-
tively. Our simulation results shed light on the feasibility
and structure of super-botnets and some properties of their
command-and-control mechanism. New forms of attack that
super-botnets can launch are explored, and possible de-
fenses against the threat of super-botnets are suggested.
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1 Introduction

Big botnets are big news. Botnets involving over
100,000 zombie computers have been claimed [6, 8, 21],
and there was even one case involving 1.5 million compro-
mised computers [19]. However, from an adversary’s per-
spective,1 big botnets are bad from the standpoint of sur-

1In this paper, we generically refer to people creating and using botnets
as adversaries.

vivability: someone is likely to notice a big botnet and take
steps to dismantle it.

The recent trend is toward smaller botnets with only sev-
eral hundred to several thousand zombies [5]. This may
reflect better defenses — the malware creating new zom-
bies may not be as effective — but it may be a conscious
decision by adversaries to limit botnet size, and try to avoid
detection. It has also been suggested that the wider avail-
ability of broadband access makes smaller botnets as capa-
ble as the larger botnets of old [5].

We suggest that there is a new threat posed by smaller
botnets: namely, an adversary can create a large number of
small, independent botnets. By themselves, the smaller bot-
nets can be exploited by the adversary in the usual way, such
as being rented to spammers. The discovery and disabling
of some of the adversary’s botnets is not a concern, either,
because the botnets are independent and numerous.

The new threat arises if the botnets are designed to be
coordinated into a network of botnets, which we call a
super-botnet. For example, an adversary could command
the super-botnet to launch a massive DDoS attack on a cho-
sen target, or to pummel a critical piece of the Internet’s
infrastructure like the DNS. A super-botnet design poten-
tially allows an adversary to surreptitiously amass enough
machines for attacks of enormous scale.

In the remainder of this paper we explore super-botnets
and potential defenses against them. Section 2 describes
work related to super-botnets. Section 3 discusses the vul-
nerabilities inherent in traditional botnet design, to motivate
why adversaries would utilize a super-botnet. Section 4 ad-
dresses whether it is feasible for adversaries to construct
large super-botnets, and Section 5 discusses the communi-
cation mechanisms employed in such super-botnets. Sec-
tion 6 discusses a new type of time-delayed attack that can
be launched using a super-botnet. Section 7 discusses how
defenders can combat both this new form of attack, and
super-botnets in general. Finally, we conclude and discuss
future research directions in Section 8.



2 Related Work

Many different command-and-control (C&C) mecha-
nisms for botnets are being seen and suggested [5]. For
example, an IRC server could be used to send commands
to compromised machines; or, a zombie could even receive
commands covertly by making a DNS request to a domain
under the adversary’s control [9]. There is continuous evo-
lution of the control mechanisms used within a botnet.

Control mechanisms for co-ordinating multiple botnets
have also been discussed in the literature. Nazario et al.
talk about communicating worms that isolate themselves in
small groups, to limit the impact of an infected machine be-
ing discovered [12]. The possibility of independent botnets
being operated in a tree-like structure has also been sug-
gested [16]. Dagon et al. classified different botnets struc-
tures into a taxonomy [6], and the super-botnet structure
(described in detail in Section 5) constitutes a special case
of a random graph botnet. Empirical studies have even been
done on the different connectivity models of botnets [14].

Also described in Section 5, a super-botnet’s communi-
cation structure can be formed through opportunistic data
exchanges between individual botnets that occur during re-
dundant infection attempts. A similar idea for worms was
briefly mentioned in [18]. Other methods of exchanging
information between infected hosts, such as Chen and Ji’s
client-server model [4], have also been discussed.

Because of the myriad of related botnet mechanisms al-
ready available to adversaries, super-botnets must be con-
sidered as a possible future evolution of today’s botnets. As
such, it is necessary to investigate what threat super-botnets
will pose in the future, and what defenders can do proac-
tively to protect themselves and others.

3 Vulnerabilities of Traditional Botnets

Before we consider why a trend toward super-botnets is
dangerous, it is first important to understand some weak-
nesses exhibited by traditional botnets. By recognizing how
the traditional botnets of old can be detected and disabled, it
will become clearer why a decentralized super-botnet poses
such a threat.

A traditional botnet uses some C&C channel to receive
commands: for instance, an IRC server. Alternately, a bot-
net may periodically poll an information source that is un-
likely to be blocked or raise suspicion, such as accessing
a web site (perhaps located via a web search engine), or
making a DNS request to a domain under the adversary’s
control [9].

It is this command-and-control mechanism that consti-
tutes a weak point for defenders to target. There are five
main goals that defenders could have:

1. Locate or identify the adversary. The adversary is
vulnerable to detection when they issue commands to
the botnet via this C&C channel. Defenders may not
know the nature of the adversary’s commands in ad-
vance, but assuming some of the zombies have been
detected and analyzed, the source of the adversary’s
commands will be known and alarms can be triggered
when commands are sent. For example, a defender
may know that botnet commands will be found by
periodically performing Google searches for “haggis
gargling” and sifting through the avalanche of results
for the adversary’s commands. Monitoring when and
where Google finds such a web site may provide a lead
as to the whereabouts of the adversary. In turn, an ad-
versary may try to obfuscate their trail by issuing bot-
net commands through proxies or anonymity networks
like Tor [7].

2. Reveal all the infected machines. Again, if the zombies
are polling a known location for the adversary’s com-
mands, then the polling activity will reveal infected
machines. Meeting this goal and the previous one may
require cooperation between law enforcement and the
private sector.

3. Command the botnet. A defender could attempt to
send a command to the botnet to shut it down. A re-
lated concern for the adversary is that another adver-
sary may try to usurp control of the botnet. For these
reasons, as pointed out by Staniford et al. [18],2 the
adversary must digitally sign or encrypt botnet com-
mands using asymmetric encryption (described in Sec-
tion 8.1 of Menezes et al. [11, p.283]), so that the com-
promise of an infected machine does not reveal a secret
key. Generating a public/private key pair in advance,
the adversary could send the public key along with the
worm, solving the key distribution problem.

4. Disable the botnet. If a defender can shut down the
C&C channel (along with any redundant channels),
the entire botnet will be rendered useless in a single
blow. With the zombies unable to receive commands,
the botnet will cease to operate.

5. Disrupt botnet commands. If the C&C channel is one
that cannot easily be shut down, such as Google, other
defense methods can be employed. The adversary’s
commands can be intentionally garbled by a defender
regardless of whether or not they are encrypted or
signed — changing a few bits is sufficient to achieve
this goal, leaving the adversary unable to control the
botnet. This defense can be applied locally, e.g., by

2Staniford et al. presented their work in the context of updating worms,
but the technique could be applied to controlling botnets.



IPS/firewall rules, or globally if a defender has enough
access to the botnet’s command source.

Large traditional botnets are vulnerable to defenders be-
cause of the easily-targeted C&C channel. The benefits to
the adversary of decentralizing their botnet into a super-
botnet — a network of independent botnets — are clear.
But, we must still explore whether it is feasible for an ad-
versary to create a large super-botnet.

4 Super-Botnet Feasibility

Are large super-botnets feasible? To answer this ques-
tion, we must consider how a super-botnet can be con-
structed. We begin by abstracting away some details:

1. For simplicity, we assume that the super-botnet is con-
structed using only one worm. This does not imply
that the worm’s code is uniform across infections, of
course, because the worm could be polymorphic or
metamorphic in nature.

More than one worm may be involved in practice. A
single adversary could create multiple worms, or worm
variants; multiple adversaries could conspire to cre-
ate multiple worms based on a common super-botnet
specification. Neither possibility is farfetched. For
some malware, creating variants is practically a cot-
tage industry — Spybot, for example, has thousands of
variants [3]. Adversaries have collaborated in the past
on malware [20], and N-version programming [2] of
worms by adversaries within a single organization is
definitely possible in the context of information war-
fare. Implementation diversity can make worm detec-
tion more difficult for signature-based detection meth-
ods.

2. The infection vector(s) the worm uses are not relevant
to the analysis and are not considered. We also ig-
nore failures to propagate in our simulations. While
these considerations are important in real worm prop-
agation, we are only interested in the resulting super-
botnet structure.

3. The exact C&C mechanism(s) used within individual
botnets does not matter. We assume a centralized IRC-
based C&C for concreteness, but it could just as easily
be a peer-to-peer architecture or some other method.

One way to establish a super-botnet is with a two-phase
process. In the first phase, a worm is released which makes
every new infection a C&C machine for a new, independent
botnet. In the second phase, after enough C&C machines
have been created, new infections populate the C&C ma-
chines’ botnets. This method is risky for an adversary, be-
cause the “backbone” of the super-botnet’s C&C infrastruc-
ture is all established by direct infections; discovery of one

C&C machine can easily lead to others using information
from firewall logs, for example.

Instead, we use a tree-structured algorithm that is depen-
dent on three constants: BOTNETS, HOSTS_PER_BOTNET,
and SPREAD. This algorithm creates BOTNETS individual
botnets, each consisting of HOSTS_PER_BOTNET zombies.
As each zombie is infected, it learns how many additional
zombies it will be responsible for adding to its botnet (to
bring the size of its botnet up to HOSTS_PER_BOTNET), as
well as how many C&C machines for new, independent bot-
nets that it must infect (to bring the number of botnets up to
BOTNETS). If a zombie is not a C&C machine for a new
botnet, it also learns the location of its botnet’s C&C server.

However, each zombie infects at most SPREAD new
hosts, with priority given to adding zombies to its botnet.
By choosing a smaller SPREAD value, the adversary can nar-
row the breadth of the tree-structured growth of the super-
botnet, thereby reducing suspicious traffic and helping to
avoid rate limiting defenses [17]. Since a given zombie may
be responsible for adding many additional hosts to its botnet
and starting many new botnets (i.e., performing more than
SPREAD infections), the zombie delegates an equal amount
of the remaining work to each of the (up to SPREAD) new
hosts it infects.

When a new botnet/C&C server is created, all infor-
mation about the previous botnet is discarded, leaving
each botnet isolated. Furthermore, new C&C servers
are placed as far away from one another as the bal-
anced tree structure allows: for nontrivial values of
HOSTS_PER_BOTNET, C&C servers are separated by at least
blogSPREAD HOSTS PER BOTNET − 1c intermediate infections.

This behavior is described more formally in the pseu-
docode shown in Figure 1, and a small example of the
growth is shown in Figure 2.

Intercepting a worm close to an initial infection can
prune a large number of botnets in this pseudocode. Ad-
ditionally, the adversary must have some estimate of the
number of vulnerable hosts in order to choose an initial
value for BOTNETS. However, these concerns are just limita-
tions of the pseudocode. In practice, an adversary can seed
multiple initial infections, and use well-studied worm self-
stopping mechanisms [10] to control super-botnet growth
instead of relying on information being propagated from
worm to worm, thereby avoiding both of these issues. We
chose to keep the spread algorithm simpler for exposition,
so we could focus our study on the structure and use of
super-botnets. However, as will become apparent, the sit-
uation looks bad for defenders, even under these simple cir-
cumstances. Future simulations of greater complexity could
yield even worse results, from the perspective of a defender.

We simulated the worm pseudocode, allowing one scan
per active machine per time step. Starting with a single
seed, the simulation established 15,000 botnets with 100



D(x, y)
1 B Distribute x fairly into y slots
2 for i← 0 to y − 1
3 do L[i]← x/y
4 for i← 0 to (x mod y) − 1
5 do L[i]← L[i] + 1
6 return L

P(nti, bts, cc)
1 B nti − 1 is the number of new hosts to add to this
B botnet

2 B bts is the number of new botnets that need to be
B started

3 B cc is the IP address of the C&C server

4 if nti = 0
5 thenB Establish a new C&C server
6 bts← bts − 1
7 Start IRC server
8 cc← my IP address
9 nti←   

10 else B Use existing C&C server
11 Connect to cc

12 ntichild ← D(nti − 1, )
13 btschild ← D(bts, )

14 for i← 0 to  − 1
15 do if ntichild[i] = 0 and btschild[i] = 0
16 then continue
17 repeat target ← a host chosen by a random

scan
18 until target is a vulnerable, uninfected host
19 Infect target
20 target runs P(ntichild[i], btschild[i], cc)

I-I()
1 B The code run by the initial infection
2 P(0, , 0.0.0.0)

Figure 1. Worm pseudocode for super-botnet
creation.
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Figure 2. Worm infection pattern with 3
hosts/botnet, 4 botnets, and a spread of 2.
Shown are C&C servers ( ), non-C&C infected
machines (•), new infections (solid arrows),
links to C&C servers (dashed arrows), and
botnets formed (grey blobs).

machines apiece — a super-botnet 1.5 million strong. Fig-
ure 3 charts the growth of infections and C&C servers over
time, both for a SPREAD value of 2 and a more generous
value of 25. One interesting anomaly is that, even though
the C&C growth curve is the least smooth for a spread of
2, a spread of 3 infects 1.5 million machines the fastest. In
all cases, it is clear that a super-botnet can be established in
short order.

One question remains, though: how can the adversary
issue commands to some or all of the independent botnets,
thereby leveraging the full power of the super-botnet? The
adversary does not have a direct way to issue commands to
the botnets and, as shown, the adversary will not even know
how to locate individual botnets. In the next section, we
explore advanced communication methods.

5 Inter-Botnet Communication

The adversary may try to send commands along the
super-botnet itself, to avoid having externally-issued com-
mands be subject to attack. In this section, we consider how
this task is accomplished.

Following [18], we assume that an adversary will want
to encrypt communications both within each botnet and be-
tween botnets. When a new C&C server is created during
worm propagation, it can generate a new symmetric encryp-
tion key, as well as a new public/private key pair. The sym-
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Figure 3. Worm simulation: spread of 2 (left) and spread of 25 (right).

metric key is passed along to new infections within the bot-
net, and is used to encrypt communication within the botnet.
The public key is used to asymmetrically encrypt messages
sent to the botnet from other botnets, so the routing infor-
mation needed for botnet A to talk to botnet B is the pair

(public keyB, C&C IP addressB).

The adversary’s problem: propagating routing information
around the super-botnet. No one botnet can be allowed
to have complete information about the super-botnet, be-
cause the complete structure of the super-botnet would be
revealed if a botnet with complete routing information were
compromised by a defender. Each botnet can have par-
tial routing information instead, and know how to contact
a small finite set of its “neighbors.” But how can partial
information be gathered by a botnet?

One obvious time for a botnet to gather partial routing
information is when its C&C server is created, from the bot-
net that infected it. One less-obvious time is when a worm
tries to infect an already-infected machine. Normally this
is considered something an adversary would want to avoid
— worm contention is a waste of effort — but, for super-
botnets, this is an ideal opportunity to exchange routing in-
formation. Such exchanges would presumably only occur
while the super-botnet was being constructed, so that a de-
fender could not trivially extract routing information later
by pretending to be a worm, or flood the super-botnet with
routing information pointing to a honeypot.

Note that we abstractly consider C&C servers to be per-
forming the routing information exchange here. In practice,
a C&C server’s clients would be performing routing infor-
mation exchanges too, and sending new information to their
C&C server.

In the remainder of this section, we simulate and analyze
a routing information-exchange algorithm over a population
of 1.5 million vulnerable machines. The worm pseudocode
from Figure 1 is used, assuming infection targets are cho-
sen randomly, i.e., a random-scanning worm is simulated.

E(A, B)
1 if  > 1
2 then N ← random value ∈ [1, − 1]
3 else N ← 1
4 A randomly partitions MA into XA and YA,

where |XA| = N
5 B randomly partitions MB into XB and YB,

where |XB| = N

6 B A and B swap their chosen N pieces of routing
B information

7 A sends XA to B
8 B sends XB to A
9 MA ← the concatenation of YA and XB

10 MB ← the concatenation of YB and XA

Figure 4. Routing information exchange in the
hockey card algorithm.

Routing information exchange occurs in both of the above
scenarios: creation of a new C&C server, and one infected
machine locating another during its random scan. We de-
note botnet A’s and botnet B’s routing information by a and
b, respectively.

Intuitively, our information-exchange algorithm mimics
how children exchange sports trading cards; we refer to it
as the hockey card algorithm. Each C&C server has M slots
for routing information, and a newly-created C&C server
for botnet A begins with all its slots (MA) initialized to a.
Thereafter, when either of the two opportunities arise to ex-
change information between botnets A and B, the two bot-
nets first agree on a random number N, then A and B each
select N random slots and trade them as described in Fig-
ure 4. This code maintains M links to each botnet within



the super-botnet. Although a botnet may end up with dupli-
cates and self-links, our simulations showed that this does
not have any negative effects.

We assume that the adversary knows the addresses of
seed infections, and that they will want to communicate
through the super-botnet as surreptitiously as possible. In
other words, the adversary will not broadcast a command to
all seeds, but will select one seed and send a super-botnet
command through it. The important metric to the adversary
is thus the amount of connectivity from some seed. That is,
how many botnets will a command reach?

To evaluate this metric, we fixed three simulation pa-
rameters on the basis that the adversary would want
a large, quickly-constructed super-botnet: 15,000 bot-
nets, 100 seeds, and a spread of 3 — so, the initial
code run by each seed, with reference to Figure 1, is
PROPAGATE(0, 150, 0.0.0.0). Two parameters were
adjusted, however. First, the value of M was varied from
1 to 30 in increments to ascertain its effect on connectivity.
Second, the number of hosts per botnet was varied in in-
crements from 25 to 100 to study different probabilities of
finding other botnets during propagation. All simulations
were repeated five times to minimize the effects of random-
ness.

The results were dramatic. In every simulation run where
M was greater than 1, the amount of connectivity from any
single seed was 100%. An adversary would be able to com-
mand all the botnets comprising the super-botnet using any
one seed.

M does play a role in the resistance of the super-botnet
to defensive measures. In particular, a defender may try to
prevent an adversary from commanding their super-botnet
by reducing connectivity. Here we define the degree of a
botnet to be the sum of its useful in- and out-degrees, which
are the links remaining once self-links and duplicate links
are removed.

Following research on attacks against both random and
scale-free networks [1], we consider a defender who will
try to disable a super-botnet using two different strategies.
First, a defender may disable high-degree botnets first. This
is an effort to reduce super-botnet connectivity more quickly
than simply disabling botnets at random. It is important to
stress that this is the absolute best case, where a defender
has oracular knowledge of the super-botnet’s connectivity.
Second, a defender may disable botnets at random. This
is perhaps a more likely case, where uncoordinated defend-
ers would simply be shutting down botnets randomly upon
discovery.

The results are shown in Figure 5, for both high-degree
first targeting and random selection. We have only pre-
sented the data for 25 hosts per botnet here, because the
results were almost identical for the different numbers of
hosts per botnet we ran. Results were averaged over five

runs to compensate for randomness.
The strategy used by the defender does not seem to mat-

ter. Once M ≥ 5, a defender able to disable one-third of the
botnets in a super-botnet still leaves the adversary able to
contact one-third of their original botnets from some seed,
on average. This is still enough for a sizeable attack to be
launched with the super-botnet. Two conclusions can be
drawn:

• The adversary would set M to at least 5. However,
there is a tradeoff between robustness and disclosure.
Too large a value for M would reveal the location of a
large number of other botnets, if a defender discovers
one botnet.

• Communication through a super-botnet is robust to a
defender’s countermeasures. Finding and disabling
5000 botnets, randomly or otherwise, would be a dif-
ficult task. The only defense that is deployed widely
enough to feasibly do this is anti-virus software.

This simulation also assumes that an adversary will
only communicate through one of the initial seeds.
Botnets could announce their (encrypted) routing in-
formation to an adversary instead; this would give the
adversary many more communication endpoints to use
at the risk of leaking information to a defender. An ad-
versary may also use a small number of seeds for com-
munication, rather than just one, or alternate which
seed receives the command each time a command is
sent. Either variation by the adversary should reduce
the effectiveness of the defender’s countermeasures.

These conclusions suggest that new, large-scale defenses
are needed for the super-botnet threat. We discuss defenses
against the super-botnet threat in Section 7. First, however,
we discuss a novel application of the super-botnet’s decen-
tralized structure that allows for a new form of attack to
be launched. Understanding how this new form of attack
works will further reveal the methodology that must be used
to defend against super-botnets.

6 Time Bombs

Even with the decentralized structure of the super-botnet,
the adversary is still vulnerable to detection when a com-
mand is injected into the super-botnet. When the adversary
gives the command, “Attack CNN’s website” to a seed in-
fection, the seed will pass the command on to other botnets,
and will then launch its part in the attack. Analysis of traf-
fic logs will likely correlate the incoming message with the
proceeding massive bandwidth usage.

Of course, the incoming message to a seed from the ad-
versary will look no different than the message being passed
along from one botnet to another. Be that as it may, the
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Figure 5. Mean connectivity decrease when high-degree botnets are targeted (left) and when botnets
are randomly targeted (right).

adversary may still worry about detection. In essence, the
adversary would like to be “as far away as possible” from
the super-botnet when the attack begins, to minimize the
chance of detection.

It would be safer for the attacker to issue the command,
“Attack CNN’s website six hours from now” to the super-
botnet. Though this method of commanding the super-
botnet does not make the adversary impervious to detection
— for example, a seed infection could have been disinfected
and replaced with a honeypot, or a defender could capture
this message at some point, wait for the attack to occur, then
look back six hours in the logs for suspicious communica-
tion — it does increase the difficulty of correlating the com-
muniqué to the resulting attack. Unfortunately, the attacker
cannot simply sign this time bomb command with a private
key (assuming the botnets possess the corresponding public
key for the purpose of verifying commands) and release it
into the super-botnet. If a defender compromises a single
botnet, the time bomb would be discovered well in advance
of the attack, and the future victim could be warned.

In this section, we describe a method which uses the
super-botnet’s structure to allow the adversary to inject time
bomb commands into the super-botnet, with minimal risk
that the command will be uncovered ahead of time by a de-
fender.

Until now, we have implicitly assumed that the adver-
sary has a public/private key pair (call the public key P and
the private key S ), and that every botnet in the super-botnet
possesses P (which could have been, for example, included
in the worm that infected the zombies). The adversary signs
all commands with S , thereby ensuring that the botnets ex-
ecute only the adversary’s commands.

We now take the application of asymmetric encryption
one step further. Let C > 1 be a constant, and let the ad-
versary generate an additional C key pairs. That is, the
adversary generates key pairs {P, S }, {P1, S 1}, . . . , {PC , S C}.

Instead of including only P with the worm, the adversary
includes {P, P1, . . . , PC}. That is, each botnet receives and
passes on C + 1 public keys. However, after a given botnet
creates all of the new C&C servers that it is required to, it
deletes all but one of the extra C public keys. Specifically,
the botnet chooses a random number i ∈ [1,C], and it saves
P and Pi; all of the other public keys are wiped from that
botnet.

Note that every botnet will be in possession of P. There-
fore, if the adversary wishes to issue a command upon
which the super-botnet should act instantly, the command
should be signed with S .

The additional C key pairs are used for time bomb at-
tacks. Assume that the adversary has some command, K,
and desires that the super-botnet execute it after a delay of
T time. First, the adversary uses a secret splitting scheme,
as described in Section 12.7 of Menezes et al. [11, p.524],
to divide K into C pieces: K1, . . . ,KC . Individually, any of
the pieces are meaningless. In fact, even possessing C − 1
of the C pieces does not reveal K; all C pieces are needed
to reconstruct K. We treat the secret splitting scheme as
a black box; any scheme that meets the aforementioned
requirements would suffice. One simple implementation,
from Section 12.7.1 of Menezes et al. [11, p.525], would
be to choose random values for Ki for all i ∈ [1,C − 1],
and set KC = K ⊕ K1 ⊕ . . . ⊕ KC−1. A more general scheme,
which could even allow K to be reconstructed from any
N of the pieces, for some fixed N ≤ C, was described by
Shamir [15].

Regardless of what secret splitting scheme is used, the
adversary constructs the following message after the com-
mand is split:

{DS 1 (DS (K1)), . . . ,DS C (DS (KC)),DS (T )} ,

where DS (x) is a digital signature scheme with message
recovery, using private key S on message x, that incor-



porates a suitable, non-multiplicative redundancy func-
tion. One example of such a scheme is RSA with
ISO/IEC 9796 formatting, described in Section 11.3.5 of
Menezes et al. [11, pp.442–444]. The redundancy function
is necessary since the pieces of K look random; without it,
it would be impossible to distinguish a valid signature from
garbage [11, p.430].

This message is delivered into the super-botnet as usual,
and each botnet decodes what part of the message it can.
Since each botnet possesses only a single, randomly-chosen
Pi, it can decrypt only the corresponding DS (Ki). That is,
after the message has travelled through the entire super-
botnet, each botnet will be in possession of a signed copy
of T , and a signed copy of one of the C pieces of K.

After a delay of T has elapsed, each botnet floods its
DS (Ki) into the super-botnet. Since Ki is signed by S , each
botnet can confirm that any piece of K that it receives is,
in fact, one of the original C pieces created by the adver-
sary. After receiving and confirming all C pieces of K, each
botnet can perform the command.

This scheme is highly resistant to attacks by individual
defenders. There are two tasks that a defender may wish to
accomplish against this scheme:

• Reconstruct the command before it is executed. To
do so, the defender would require all C public keys,
P1, . . . PC . It would be difficult for a defender to cap-
ture all C public keys during the construction of the
super-botnet. Each botnet deletes all but one of these
values after it finishes spreading, and compromising a
botnet to extract all C keys while it is still spreading
would require either a honeypot capturing the worm
while it spreads, or near-instantaneous response from
a defender to an infection. Short of a honeypot captur-
ing the worm, a defender’s best chance for capturing
all C keys (or, all C of the DS (Ki)) is, for each public
key, to compromise at least one botnet that knows that
key. Then, the key can be extracted from the compro-
mised botnet.

• Destroy at least one part of the command in the super-
botnet, so that the command cannot be reconstructed
and executed. To do so, a defender would have to dis-
able each botnet that knows Pi for some i ∈ [1,C].

Assuming that a defender does not have oracular knowl-
edge about how to find botnets that match one of these two
goals, and that botnets are compromised or disabled ran-
domly (as they are found by the defender), how many bot-
nets can the defender expect to have to locate and attack, on
average, before accomplishing either of the goals?

We can answer these questions probabilistically. Com-
puting an expected value for the number of botnets that a
defender must compromise to reconstruct the command is

the subject of Appendix A.1, and computing an expected
value for the number of botnets that a defender must disable
to destroy one part of the command is the subject of Ap-
pendix A.2. Numerical simulations support the results de-
rived in the appendices.

As an example of the analysis in Appendix A.1 and Ap-
pendix A.2, let us assume that there are 15,000 botnets in
the super-botnet, and that the command is split into 100
pieces (so, the values of R and C used in the appendices are
150 and 100, respectively). To reconstruct the command,
a defender would have to compromise, on average, 509.38
botnets — roughly 3.4% of the entire super-botnet. This
sizeable task would likely be beyond the capabilities of a
single defender. Destroying a single piece of the command
would require the defender to disable, on average, 14491.62
botnets — roughly 96.6% of the entire super-botnet. This
number is so large that, in practice, the super-botnet struc-
ture would become so partitioned before the defender suc-
ceeded in eradicating one piece of the command, that the
command could not be reassembled anyway.

Clearly, defending against creative uses of the super-
botnet structure is beyond the capabilities of a single
defender, or multiple defenders working without shared
knowledge or co-ordination. To combat this new threat, new
defenses must be developed.

7 Defense Against Super-Botnets

We now turn to defense. There would be no sense for
an adversary to build a super-botnet for immediate use; a
traditional worm would be more effective in that scenario.
The strength of the decentralized super-botnet design is, af-
ter all, its resistance to defenders’ attacks over time. It is
reasonable to assume, therefore, that super-botnets would
be deployed in advance of an attack. Traditional anti-virus
software would thus be useful against super-botnets, as anti-
virus software would have time for updates and detection.

Aside from the obvious use of anti-virus software, what
defenses can be constructed to specifically target super-
botnets? As revealed by the resistance of the super-botnet’s
communication structure to the failure of individual botnets
(discussed in Section 5), and the super-botnet’s ability to
distribute its attack plans beyond the reach of a single de-
fender (discussed in Section 6), super-botnets cannot be dis-
abled by a single defender.

One solution to the threat of super-botnets is centralized
defense. When anti-virus software locates a super-botnet
infection with routing information, it could pass the rout-
ing information along to a central defense location. Given
enough disinfections, this tactic should reveal a sizeable
portion of the super-botnet’s structure. In fact, given enough
information, a centralized defense location may be able to
locate the adversary commanding the super-botnet. If com-
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Figure 6. Tracking infections backwards: the
two-hop weakness.

munication logs are available from the disinfected C&C
servers of the individual botnets, potential suspects to be
the adversary are all those machines for which routing in-
formation has not been collected at the central defense lo-
cation, but which have sent a super-botnet command to a
disinfected machine. After all, a command sent by the ad-
versary looks just like a command passed on to one individ-
ual botnet from another, except that no botnet has routing
information pointing to the adversary.

Defenders should also not underestimate the value of
studying the algorithm by which a given super-botnet im-
plementation spreads. Our worm pseudocode, for example,
spaces out C&C servers along the (tree-structured) infection
path. If infections can be tracked backwards from a C&C
server to the machine that infected it, then there are up to
SPREAD − 1 other C&C servers two hops away (Figure 6).
The adversary has a clear incentive to choose small spread
values and to destroy any information that might link differ-
ent botnets.

Aside from discerning the structure of the super-botnet,
a centralized defense location would also aid attempts to
decipher time bombs before they are executed. When a
machine is disinfected, any public keys that are captured,
as well as any un-executed time bombs, can be sent to the
central defense. Capturing all of the public keys (thereby
giving advance warning of all future time bombs sent into
the super-botnet) is a less daunting task when all available
defenders combine their knowledge.

In fact, revisiting the five goals for a defender described
in Section 3, we see that a centralized defense mechanism
can give defenders a starting point against the threat of
super-botnets:

1. Locate or identify the adversary. The adversary may
issue a command to the super-botnet in a wide variety
of places. Only through central analysis of communi-
cation logs and captured routing information could the
adversary’s direct communications be identified.

2. Reveal all the infected machines. This goal is promis-
ing: by collecting routing information from disinfected
machines, a central defense should be able to construct
at least a partial image of the super-botnet’s structure.

3. Command the super-botnet. Obviously, an adversary
who signs or encrypts commands will effectively elim-
inate any possibility of defenders injecting their own
commands into the super-botnet.

4. Disable the super-botnet. With its decentralized C&C
structure, a defender simply cannot disable the entire
super-botnet in a single stroke. There is no point at
which the C&C mechanism can be attacked to prevent
commands from reaching all of the botnets.

5. Disrupt super-botnet commands. Even if a defender
compromises a botnet, garbling super-botnet com-
mands is unlikely to work well. The same randomness
that makes the super-botnet’s communication structure
so resistant to disabled individual botnets also makes it
resistant to disrupted commands. There is no guaran-
tee that the adversary’s commands must travel through
the compromised botnet, so the majority (if not all)
of the super-botnet is likely to receive the adversary’s
commands intact.

Though a centralized defense does not aid defenders
with all five goals, it will give defenders a much needed
edge against this coming evolution in botnets. Unfortu-
nately, it is impossible to predict all forms of future super-
botnet; consequently, it is difficult to know if a centralized
defense will always work. However, a centralized defense
will be applicable against all forms of super-botnet in which
individual botnets remember routing information, because
this information can be extracted when a botnet is discov-
ered, and delivered to the central defense. Hence, security
vendors and organizations would be well-advised to prepare
centralized defense mechanisms in the near future.

8 Future Work and Conclusions

Future work will focus on adding more features to our
simulation, to explore how super-botnets behave in a more
complex environment. This work includes studying how
self-stopping mechanisms can be applied to super-botnets,
and how network characteristics, such as the use of network
address translation, can affect the spread of a super-botnet,
possibly providing an additional line of defense [13]. We
also wish to examine in more detail the relative strengths
and weaknesses of a super-botnet design, relative to peer-
to-peer botnets, both for the adversary and for defenders.

In any form, super-botnets provide adversaries with an
enormous amount of virtual firepower that is easy to con-



struct yet hard to shut down, as there is no single C&C chan-
nel for defenders to target. The loss of individual botnets
(which can, by themselves, be farmed out for spamming
and other traditional uses) is not catastrophic.

The trend toward smaller botnets can be seen as an evo-
lutionary step leading to super-botnets. This means that at-
tacks by millions of machines on the Internet’s infrastruc-
ture can appear from nowhere, as multiple small botnets
join forces. Super-botnets must be considered a serious
threat that must be defended against with new centralized
defense mechanisms.
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Appendix A Statistical Algorithms

Assume that there are B individual botnets in a super-
botnet, and that a secret is split into C pieces, with each
botnet knowing one random piece of the secret. How many
botnets would a defender have to compromise, on average,
to learn the entire secret? How many botnets would a de-
fender have to disable, on average, to destroy one piece of
the secret entirely?

So long as which piece of the secret each botnet knows is
chosen randomly, there are approximately R = B/C botnets
that know each piece of the secret.

As such, the problems of how many botnets need be
compromised or disabled reduce to more easily-stated prob-
lems. Namely, assume that there are C different colors of
marbles, and R marbles of each color are placed into a bag.
What is the expected number of marbles that would have to
be drawn from the bag, without replacement, until at least
one of each color of marble has been drawn? Similarly,
what is the expected number of marbles that would have to
be drawn from the bag, without replacement, until all the
marbles of one color have been drawn?

While one could analyse both of these problems using
a geometric distribution, that form of analysis assumes that
each marble is placed back into the bag after being drawn.



So, while using a geometric distribution would provide a
good approximation to the expected number of marbles
that would have to be drawn, the following methods are
more accurate. We have confirmed the analysis with two
independently-coded simulations of drawing marbles from
a bag without replacement.

Appendix A.1 One of Each Color

First, we investigate the problem of how many marbles
one would expect to draw in order to have drawn at least
one of each color. We present a solution to this problem, a
non-trivial variant of the collector’s problem [22].

Imagine that, instead of stopping drawing marbles from
the bag once one of each color has finally been drawn, the
marbles are drawn one at a time from the bag and placed on
a table from left to right, until there are no marbles left in
the bag. Denote the first color of marble that is drawn as
color 1. One may or may not draw additional marbles of
color 1 before drawing a different color. Denote this next
color as color 2. Continue as such, denoting the final new
color of marble that is drawn as color C.

Using this notation, we have a way of describing T , the
total number of marbles drawn before we have at least one
of each color. Namely, T is the number of marbles drawn
up to and including the first time a marble of color C was
drawn.

Obviously, T ≥ C, since we need to draw at least one
marble of each color. The question is: how many extra mar-
bles of colors 1 . . .C−1 are drawn before the first marble of
color C? We denote the number of extra marbles of color i
drawn as ei. Hence:

T = C +
C−1∑
i=1

ei

where ei ≥ 0 ∀i ∈ [1,C − 1].
To compute the expected value of T , denoted E(T ), we

need only compute the expected values for the ei, E(ei). We
start by computing E(eC−1).

Envision the marbles lying on the table, sorted from left
to right in the order they were drawn. Now, take away all of
the marbles except those of color C and the leftmost marble
of color C − 1. If we were to put the R − 1 missing marbles
of color C − 1 back on the table where they were just lying,
where would we expect to find them?

Since all R − 1 of those marbles must have been drawn
from the bag after the first marble of color C − 1, all of the
missing marbles must appear to the right of the lone mar-
ble of color C − 1. However, as demonstrated by Figure 7,
there are R + 1 distinct placement positions (relative to the
remaining marbles of color C) to the right of the lone mar-
ble of color C − 1 into which any of the missing marbles

C-1 C CC

R marbles of color C

R+1 placement spots

Figure 7. Marble placement spots for the
missing marbles of color C-1.

of color C − 1 could be placed (note that multiple missing
marbles may occupy a single placement position once they
are returned to the table). Namely, a missing marble will be
placed to the left of λ marbles of color C, where λ ∈ [0,R].

Note that only one of those R + 1 positions is to the left
of all of the marbles of color C. So, we expect that 1

R+1 of
the missing marbles will appear to the left of the marbles of
color C. Since there are R−1 missing marbles, we conclude:

E(eC−1) =
1

R + 1
· (R − 1) .

A similar argument can be made to compute the value of
E(eC−2) (for expository purposes, we assume C ≥ 3). This
time, when we start with all of the marbles on the table,
sorted from left to right by draw order, we take a slightly
different course of action. We take away all of the marbles
except those of colors C and C − 1, and the leftmost marble
of color C − 2. Where would we expect to find the missing
R− 1 marbles of color C − 2 were they replaced? This time,
there are 2R+1 possible placement locations for the missing
marbles. But, how many of them lie to the left of the first
marble of color C?

Obviously the location directly to the right of the lone
marble of color C − 2, as well as the location directly to the
right of the first marble of color C−1 both meet this criteria.
Do not forget, however, that we expect to find E(eC−1) extra
marbles of color C − 1 to the left of the marbles of color
C; the locations directly to the right of those marbles are
also on the left side of the marbles of color C. As such,
2 + E(eC−1) of the possible 2R + 1 placement locations for
the R − 1 missing marbles are located to the left of the first
marble of color C, yielding:

E(eC−2) =
2 + E(eC−1)

2R + 1
· (R − 1) .

The general form of the above argument yields:

E(eC−i) =
i +
∑i−1

j=1 E(eC− j)

iR + 1
· (R − 1) .



C-ET(C,R)
1 sum← 0
2 for i← 1 to C − 1
3 do sum← sum + (sum + i)(R − 1)/(iR + 1)
4 return sum +C

Figure 8. A fast algorithm for computing E(T).

Inserting the now-computable values for the E(ei) into

E(T ) = C +
C−1∑
i=1

E(ei)

yields the final solution to our problem. A fast pseudocode
algorithm for computing E(T ) is included in Figure 8.

Appendix A.2 All of One Color

Next, we investigate the problem of how many marbles
one would expect to draw in order to have drawn all of the
marbles of one color. The solution is, in fact, quite similar
in form.

Again, imagine that the marbles are drawn one at a time
from the bag and placed on a table from left to right, until
there are no marbles left in the bag. We number the colors
from 1 to C; however, this time we use a different scheme
to assign the numbers. Denote the first color of marble for
which we succeed in drawing all R marbles as color 1. The
next color of marble for which we drew all R marbles is
denoted color 2. Continuing as such, the color of the last
marble drawn is denoted as color C.

Using this numbering scheme, we want to describe S ,
the total number of marbles drawn before we have all the
marbles of one color. Namely, S is the number of marbles
drawn up to and including the last time a marble of color 1
was drawn.

As before, we have an obvious lower bound: S ≥ R,
since there are R marbles of color 1. The question is: how
many marbles of colors 2 . . .C are drawn before the last
marble of color 1? We denote the number of marbles of
color i drawn before the last marble of color 1 as xi. Hence:

S = R +
C∑

i=2

xi

where xi ≥ 0 ∀i ∈ [2,C].
Similar to before, we wish to calculate E(S ) by comput-

ing the E(xi). We start with E(x2).
Envision the marbles lying on the table, sorted from left

to right in the order they were drawn. Now, take away all of
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Figure 9. Marble placement spots for the
missing marbles of color 2.

the marbles except those of color 1 and the rightmost marble
of color 2. If we were to put the R − 1 missing marbles of
color 2 back on the table where they were just lying, where
would we expect to find them?

Since all R − 1 of those marbles must have been drawn
from the bag before the last marble of color 2, all of the
missing marbles must appear to the left of the lone marble
of color 2. However, as demonstrated by Figure 9, there are
R+ 1 distinct placement positions (relative to the remaining
marbles of color 1) to the left of the lone marble of color
2 into which any of the missing marbles of color 2 could
be placed (as before, multiple missing marbles may occupy
a single placement position once they are returned to the
table). Namely, a missing marble will be placed to the left
of λ marbles of color 1, where λ ∈ [0,R].

Note that all but one of those R+1 positions is to the left
of some of the marbles of color 1. So, we expect that R

R+1
of the missing marbles will appear to the left of a marble of
color 1. Since there are R−1 missing marbles, we conclude:

E(x2) =
R

R + 1
· (R − 1) .

Unsurprisingly, a similar argument can be made to com-
pute the value of E(x3) (as before, for expository purposes,
we assume C ≥ 3). This time, when we start with all of the
marbles on the table, sorted from left to right by draw order,
we take away all of the marbles except those of colors 1 and
2, and the rightmost marble of color 3. Where would we ex-
pect to find the missing R − 1 marbles of color 3 were they
replaced? This time, there are 2R + 1 possible placement
locations for the missing marbles. But, how many of them
lie to the left of the last marble of color 1?

Obviously, the locations directly to the left of any of the
marbles of color 1 meet this criteria. Do not forget, how-
ever, that we expect to find E(x2) marbles of color 2 to the
left of the last marble of color 1; the locations directly to
the left of those marbles are also on the left side of the last
marble of color 1. As such, R + E(x2) of the possible 2R+1
placement locations for the R − 1 missing marbles are lo-



C-ES(C,R)
1 sum← 0
2 for i← 1 to C − 1
3 do sum← sum + (sum + R)(R − 1)/(iR + 1)
4 return sum + R

Figure 10. A fast algorithm for computing
E(S).

cated to the left of the last marble of color 1, yielding:

E(x3) =
R + E(x2)

2R + 1
· (R − 1) .

The general form of the above argument yields:

E(xi) =
R +
∑i−1

j=2 E(x j)

(i − 1)R + 1
· (R − 1) .

Inserting the now-computable values for the E(xi) into

E(S ) = R +
C∑

i=2

E(xi)

yields the final solution to our problem. A fast pseudocode
algorithm for computing E(S ) is included in Figure 10 (the
for loop has been changed from i ∈ [2,C] to i ∈ [1,C − 1]
to simplify the i − 1 into an i inside the loop).


