Development Languages




Overview

« What games need from a language
e CH++

« Scripting




Language

« First (and hardest to change) architectural decision

« Games have some unusual architectural requirements
— Performance is far more important than most other domains.
» Garbage collected languages can be particularly dangerous at scale.

— BUT there is also an unusually large amount of complicated logic,
which needs good abstractions.

— Extreme portability is often important

 Many games have server components, which have
different requirements from client but also from other web

apps.
— Server can afford to give up more performance than client (GC is
probably fine), but not as much performance as other web apps
(Game server are frequently no I/O bound, which most web
services are)



Language

« C++is by far the most common language for game
(client) development
— C# is probably second (Due to Unity)
— Some outliers as well, from relatively common to very niche
(Minecraft: Java, Jak & Daxter: GOAL)
« C++ provides a good mix of performance and abstraction
— And is available almost everywhere

* More variety on the server, but still slightly different from
other web tech stacks
— C++ (To share logic with the client for multi-player games)
— Java (and related JVM languages like Scala)
— Go (For performance)
— Erlang (For stability)



C++ Alternatives

More modern system programming languages might
eventually be able to replace C++ for games

— i.e. Go / Rust / Swift

— Or fast interpreted languages (Java, C#)

* More expressive in some areas than C++, generally safer
 All have problems though

— Slower than C++
* And, crucially, less control
— Go / Java / C# . Garbage collection
— Rust : Unreasonably strict
— Swift: Poor cross-platform support

« Another interesting effort: Jai
 Huge momentum to overcome for any of these though



Scripting Languages

« C++isn't the best choice for all problems
— Complicated feature set, syntax
— Low-level, dangerous
— Lengthy shutdown/compile/link/rerun development process

* You can get lots of benefits from using a higher level
language

— EXxpressiveness, iteration, safety

— More accessible to designers (and end users)

S




Advantages of Scripting

« EXxpressiveness

— Scripting languages employ higher level constructs than C++
 Reduced iteration time

— Interpreted, or byte-code compiled on-the-fly

— Live reload
« Useful features

— Automatic resource management (garbage collection)
N ' afer data struct




Problems

Additional work to bind the chosen language to C++

— These bindings are often non-trivial, needing complicated
template code, parsing header files, etc.

Standard C++ tools are not script aware
— Debugger, compiler, profiler

— Script is a “black hole” to C++
Multi-language debugging is harder

Script code runs slower

= f’}ﬁ\tn =

i i




Division of Labour

« Script can can be employed with varying levels of
commitment
— Loading only, scripts just configure C++ components at load time
— Small number of high level scripts running

— Entity behaviour scripted

» Each entity is running a little script (usually a state machine of some
sort)

— Write the whole game in the script language




Common uses of scripting

« Mission scripting
— Track high level goals for player (location to go to)
— Position mission specific items / entities

« Al entity behaviours
— Find nearest entity of another type
— Issue a pathfind

« Controlling cut scenes




Scripting Philosophy

 Where a team stands on this depends on
— the type of game they are writing
— the programming ability of the scripters, and

— how much performance they are willing to trade for the benefits of
scripting




Concurrency

|t is often convenient to model an entity’s behaviour/brain/
state machine as an independent thread of execution

« Scripts provide a convenient mechanism to support this
« Often built in language support
— E.g. Lua co-routines

« Script threads are co-operatively scheduled, so there are
fewer issues compared to pre-emptive OS-level threads

ogkl g pr

.F'~ e ‘c""f )




Choice of (Scripting) Languages

 Lua
— Widely used in the game industry
— Designed for embedding
— Byte-code interpreted
— Dynamically typed
— Very flexible tables (associative arrays) as the fundamental data
structure
— Simple, clean syntax




Choice of Languages

« Java/C#

— Statically typed
— Very rich standard libraries
— ODbject oriented
— Object reflection, serialization
— Properties (C#)
— Good performance
- Significant safety benefit over C++, but not much gain in




Choice of Languages

« Perl / Python / Ruby / PHP

— Very different syntax, but similar feature sets
— Rich standard libraries

— Dynamically typed

— Garbage collection

— Generally pretty slow

— Large memory footprint

All are intended to be much more self contained




Choice of Languages

« Lisp, Scheme, etc.
— Very expressive syntax
* Not terribly readable, though
— Dynamically typed, GC’d, interpreted or compiled
— Easy to write an interpreter for
— Garbage collection
— Decent performance (if you have a good implementation)
— Doesn't play well with C++




Choice of Languages

« Other embeddable languages:
— Small, Squirrel, lo, interpreted C (LCC), Tcl, etc.
— There are a lot of choices out there

* Roll your own?
— Get exactly the mix of features you want

— Seamless C++ bindings, state-machines, concurrency, event
handling, resource management

— Less common even at AAA level now

» UnrealScript: Java-esge language with game-oriented features,
deprecated in favour of Blueprint

* GOAL: Naughty Dog'’s in house lisp variant, ditched when their Lisp
guy retired, though they now use an off-the-shelf Scheme interpreter
(and more recently Racket) as a scripting language



Visual scripting languages

» » » o

O v I
& et

S —"7 o

o T
Al e mowx‘,,. \ o v V]
. &-0-

rogrammi

Duna El) e

® 1

DL

A W o & g RN
A AR R ~ P ey dm




Summary

« C++, for better or worse, still the big dog in game
development

 It's worth using scripting to gain some productivity and
expressiveness back that C++ takes away

» Lots of approaches and languages
— Pick a commitment level
— Lua is often the default for text scrlptlng these days




