
Development Languages

1

Overview

• What games need from a language
• C++
• Scripting

Language

• First (and hardest to change) architectural decision
• Games have some unusual architectural requirements

– Performance is far more important than most other domains.
• Garbage collected languages can be particularly dangerous at scale.

– BUT there is also an unusually large amount of complicated logic,
which needs good abstractions.

– Extreme portability is often important
• Many games have server components, which have

different requirements from client but also from other web
apps.
– Server can afford to give up more performance than client (GC is

probably fine), but not as much performance as other web apps
(Game server are frequently no I/O bound, which most web
services are)

Language

• C++ is by far the most common language for game
(client) development
– C# is probably second (Due to Unity)
– Some outliers as well, from relatively common to very niche

(Minecraft: Java, Jak & Daxter: GOAL)
• C++ provides a good mix of performance and abstraction

– And is available almost everywhere
• More variety on the server, but still slightly different from

other web tech stacks
– C++ (To share logic with the client for multi-player games)
– Java (and related JVM languages like Scala)
– Go (For performance)
– Erlang (For stability)

C++ Alternatives

• More modern system programming languages might
eventually be able to replace C++ for games
– i.e. Go / Rust / Swift
– Or fast interpreted languages (Java, C#)

• More expressive in some areas than C++, generally safer
• All have problems though

– Slower than C++
• And, crucially, less control

– Go / Java / C# : Garbage collection
– Rust : Unreasonably strict
– Swift: Poor cross-platform support

• Another interesting effort: Jai
• Huge momentum to overcome for any of these though

Scripting Languages

• C++ isn't the best choice for all problems
– Complicated feature set, syntax
– Low-level, dangerous
– Lengthy shutdown/compile/link/rerun development process

• You can get lots of benefits from using a higher level
language
– Expressiveness, iteration, safety
– More accessible to designers (and end users)

• Games usually try to play it a little safe and use a mixture
– C/C++ “engine”
– a high level language bolted on for “scripting”

Advantages of Scripting

• Expressiveness
– Scripting languages employ higher level constructs than C++

• Reduced iteration time
– Interpreted, or byte-code compiled on-the-fly
– Live reload

• Useful features
– Automatic resource management (garbage collection)
– No pointers, safer data structures
– Dynamic typing

• Accessibility
– Easier for casual programmers to grok than C++

• Customizable
– Write your own language, or change an existing one to suit your

needs

Problems

• Additional work to bind the chosen language to C++
– These bindings are often non-trivial, needing complicated

template code, parsing header files, etc.
• Standard C++ tools are not script aware

– Debugger, compiler, profiler
– Script is a “black hole” to C++

• Multi-language debugging is harder
• Script code runs slower

– Not always significant. 90/10 rule
• Harder to keep memory usage in check
• Having non-programmers write code can be a disaster

Division of Labour

• Script can can be employed with varying levels of
commitment
– Loading only, scripts just configure C++ components at load time
– Small number of high level scripts running
– Entity behaviour scripted

• Each entity is running a little script (usually a state machine of some
sort)

– Write the whole game in the script language
• Not really scripting any more then, is it?
• Use C/C++ only to accelerate the performance-critical stuff

Common uses of scripting

• Mission scripting
– Track high level goals for player (location to go to)
– Position mission specific items / entities

• AI entity behaviours
– Find nearest entity of another type
– Issue a pathfind

• Controlling cut scenes
– Position entities and cameras, trigger animation and dialog tracks

• Animation trees / blending
– If this button gets pressed in this frame range of an animation play

this animation

Scripting Philosophy

• Where a team stands on this depends on
– the type of game they are writing
– the programming ability of the scripters, and
– how much performance they are willing to trade for the benefits of

scripting

Concurrency

• It is often convenient to model an entity’s behaviour/brain/
state machine as an independent thread of execution

• Scripts provide a convenient mechanism to support this
• Often built in language support

– E.g. Lua co-routines
• Script threads are co-operatively scheduled, so there are

fewer issues compared to pre-emptive OS-level threads
– No locking primitives, race conditions, etc.
– Better performance

• Cheap context switch

Choice of (Scripting) Languages

• Lua
– Widely used in the game industry
– Designed for embedding
– Byte-code interpreted
– Dynamically typed
– Very flexible tables (associative arrays) as the fundamental data

structure
– Simple, clean syntax
– Garbage collection
– Not natively object-oriented, but can fake it effectively
– Good performance (for a scripting language)

Choice of Languages

• Java / C#
– Statically typed
– Very rich standard libraries
– Object oriented
– Object reflection, serialization
– Properties (C#)
– Good performance

• Significant safety benefit over C++, but not much gain in
expressiveness

• Generally these languages are too close to C++ to offer
huge benefits as a scripting language
– A decent choice as an alternative to C++
– Unity does offer C# as (a) scripting language, though

Choice of Languages

• Perl / Python / Ruby / PHP
– Very different syntax, but similar feature sets
– Rich standard libraries
– Dynamically typed
– Garbage collection
– Generally pretty slow
– Large memory footprint

• All are intended to be much more self contained
application languages
– Fairly hostile to embedding in C++

• Optimised for text processing, which isn't a big concern
for games

Choice of Languages

• Lisp, Scheme, etc.
– Very expressive syntax

• Not terribly readable, though
– Dynamically typed, GC’d, interpreted or compiled
– Easy to write an interpreter for
– Garbage collection
– Decent performance (if you have a good implementation)
– Doesn't play well with C++
– Hard for people trained in imperative programming styles to learn

• JavaScript
– Lots of advantages due to ubiquity in web programming

• Easy to find/train developers
• Very fast and embeddable implementations out there

(JavaScriptCode, V8, SpiderMonkey)

Choice of Languages

• Other embeddable languages:
– Small, Squirrel, Io, interpreted C (LCC), Tcl, etc.
– There are a lot of choices out there

• Roll your own?
– Get exactly the mix of features you want
– Seamless C++ bindings, state-machines, concurrency, event

handling, resource management
– Less common even at AAA level now

• UnrealScript: Java-esqe language with game-oriented features,
deprecated in favour of Blueprint

• GOAL: Naughty Dog’s in house lisp variant, ditched when their Lisp
guy retired, though they now use an off-the-shelf Scheme interpreter
(and more recently Racket) as a scripting language

Visual scripting languages

• Get away from text oriented programming environment
• Popularized by Kismet in UE3 and now Blueprint in UE4
• Even more accessible to non-developers

Summary

• C++, for better or worse, still the big dog in game
development

• It's worth using scripting to gain some productivity and
expressiveness back that C++ takes away

• Lots of approaches and languages
– Pick a commitment level
– Lua is often the default for text scripting these days
– Visual scripting is getting to be more of a big deal as well

