Gameplay




Introduction

« What do we mean by gameplay?

— Interaction between the player and the game

» The distinguishing factor from non-interactive media like film
and music

— Sometimes used interchangeably with “‘game mechanics”
— This is where fun lives

« Gameplay components




Levels of gameplay

« Second-to-second
* Where is this missile moving next frame?
« Has the enemy parried my attack?
e “The simulation”
e Minute-to-minute
 What is the players current objective?




World Representation

This is what changes as a result of player
interaction

— The Al also needs to keep track of what is going on in
the game

A very simple example:

— We can represent a tic-tac-toe board as a two

dimensional array of characters
A slightly less simple example:

— Pac Man consists (minimally) of the locations of Pac Man
and all the ghosts, locations of the walls, and positions of
the active pellets

More complicated games typically do not have a
fixed set of game entities

— Need a dynamic data structure to manage entities



World Representation Requirements

Some important first questions:
— How large is the world?
— How complex is the world?
— How far can you see?
— What operations will be performed?
 Visibility
. Audibility
» Path finding




World Representation: Lists

« Simplest approach: one big list
— All search operations are pretty expensive
— But all operations are about the same
* i.e. no slower to search by name than by position
— Storage space and algorithm complexity are low
— Good for extremely simple games (< 100 entities)

« Can make it a little more useful with multiple lists
* In more complicated structures each world node




Spatial World Representation

« Spatial data structures
— K-D trees
— BSP trees
— Grid
— Graph
— Whatever
* Dictionary
— Spatial hashing
* Hybrid
— Big games use multiple techniques at the same time
— or different techniques for different kind of data
— each optimised for the particular queries on that data




Sphere of Influence

« Rather than simulating thousands of entities in a
large world, many games maintain a small bubble
of activity around the player

— Or around the camera
— Could be somewhat off-centre

» Keeps the activity centered around the player

* The world outside the sphere is downgraded in
fidelity, or shut off entirely
— Typically multiple spheres for different types of entities
— Typically tied to level-of-detail (LOD) systems

« Entities can be recycled as they leave the sphere
— Strive to recycle objects that aren't visible
— Or fade them in/out gently in the distance



Entity Behaviour

* We want our entities to do interesting things

« Two major strategies employed:

— Scripted behaviour
 as in acting, where an actor follows a script
» good for drama

— Simulated behaviour
* let the rules of the world do their thing
* good for novelty




Scripted Behaviour

« Explicitly add individual behaviours to entities

function barrel::collide(hit_by)
if hit_by.type == bullet
damage += 10
if damage >= 100
PlayAnimation(exploding)
PlaySound(exploding_barrel)




Comments

Simple to implement

Good for one-off, unique game events
— Cut-scene triggers

Not flexible

Misses out on emergent opportunities
— No chain reaction explosions
— Doesn't explode when hit by rockets

R




Simulated Behaviour

« Define a few high-level rules that affects how
objects behave

« Combine these rules in interesting ways when
objects interact

* Properties of objects:
— GivesDamage(radius, amount)




Entity Properties

« Entities in this example, and their properties:
— Bullet
» GivesDamage(0.01, 10)
+ MaxDamageAbsorb(0)
» BreakBehaviour(disappear)
— Barrel
» MaxDamageAbsorb(20)
- BreakBehaviour(explode)




Explosion Behaviour

function entity::collide(hit_by)
damage += hit_by.GivesDamage.amount
if damage > MaxDamageAbsorb
switch BreakBehaviour
case disappear:
DestroySelf()




Comments

* Observed behaviour the same as the first example
— when a lone barrel is shot
» Alot of nice behaviour can emerge
— Cascading barrel explosions
— Non-bullet objects causing damage can be added easily
— Splash damage
« Easy to add new properties and rules
— Arocket is just a bullet with BreakBehaviour = explode

— Different damage classes
* e.g. electrical damage that only harms creatures, but doesn't affect
\ani ob




Triggers

* Very common way to initiate entity behaviour
« Common types:
— Volume
— Surface
— Time
* When the trigger condition is met (player occupies trigger
volume, timer runs out, etc.):
— Send event

— Run script
— Execute callback




I\

* Video games use a unique definition of Al

— A lot of what games call “Al” isn't really
intelligence at all, just gameplay

— Al is the group of algorithms that control the
objects in the game

— It is the heart of the game, and often has the
most influence on how much fun the game is
» Making the Al “smart” is not the hard part

— The game is omniscient and omnipotent, so it
can always kick your ass if it chooses to

— The trick is in making Al that is challenging yet
realistically flawed



State Machines

e State machines are used to control moderate to
complex Al behaviour

« Often implemented in an ad-hoc manner with a big
switch statement
— Fine for relatively simple behaviour

« Commonly implemented in script
— Still just a switch statement with lots of syntactic sugar




Mapping Events to Behaviours

* The Al interprets a button press as an intention to
perform a certain action
— Call a function, run a script, set a variable

« Often this is a simple mapping, but it can become
complex depending on the game
— For example, some games have camera-relative controls
— Fighting games require queueing of inputs for combos

e There are constraints on allowable behaviours

— These constraints can be quite complex
* Physical constraints

» Logical constraints (rules)
— E.g. conditions on state transitions



Physics

 What do we mean by physics

— Rules by which objects move and react in the gameplay
environment

* Q: Butisn'’t this the same as Al?
 A:To alarge extent it is

* Physics doesn't necessarily imply a sophisticated rigid body
dynamics system

— Pong modelled ideal inelastic collisions pretty well
» In fact, “real physics” is usually just a tool in the box

=




Uses of Physics

« Collision detection
— Detect interactions of entities in the environment, e.g. triggers

* Animation
— Complex shapes and surfaces (chains, cloth, water)
— Realistic environment interactions (bounce, tumble, roll, slide)
— Reaction to forces (explosions, gravity, wind)
— Augment “canned” animation with procedural animation
— Hit reactions, “rag doll”

« Gameplay mechanics




Al Use of Physics

« Generally the Al keeps the physics system reigned in
— Objects only go into “full simulation mode” under specific

circumstances and often only for a limited period of time

« Example from Prototype and Cyberpunk 2077

Traffic cars generally slide around the world "on rails"

If an object appears in the car's “visibility cone”, it comes to a
gradual stop

Traffic cars in “rail mode” can impart forces on other objects (peds)

If the car collides with another car, the Al puts them into full
simulation

« Al computes an impact force based upon collision information, and
tunables

» Car is placed under control of the rigid body system, and allowed to
bounce around until it comes to rest

* Then the car is put to sleep (removed from rigid body system)
 If it's damaged it never returns to Al control



Interactions Between Objects

* S0, some objects are under physics control, while
other are under Al control

« What happens when they collide?

— To the physics system, Al controlled objects don't follow
the rules

* Velocities, positions are under Al control

» Properties like mass, and friction, and restitution may not be
defined for Al controlled entities

« There needs to be a mechanism to compute
plausible forces to pass to the physics system to
apply to the simulated object

» Likewise, the Al controlled object will have some
sort of collision response programmed into it

— Play animation, move object, apply damage, trigger
sounds, change entity state, etc.



Physics Hand-off

 When the Al places an object into full simulation, it
sets up the initial conditions for the object's rigid
body

— Position, velocity, angular velocity

* In the simplest form, the Al-managed position and
velocities are copied into the rigid body

« There may be considerable massaging of the
conditions to make the response more interesting,
or realistic-appearing

« Example from Hulk 2:

— When Hulk elbows a car, angular velocity is carefully
chosen to make it launch up into the air, tumble end-over-
end (with variation), and land close behind him

— Thrown objects are kept out of general physics simulation
until they hit something



Tuning

« Physical simulations can produce a lot of emergent
behaviour

« This can be good

— Adds variety to gameplay and presentation

— Players can discover or create situations that weren't
envisioned by the designer

 This can be bad

- — Players can discover or create situations that weren't




Realism, Accuracy and Fun

« Realism is a powerful tool, but it is not the end goal
for video games.
« There are differences between what people believe
Is realistic, and real-world behaviour.
— “Real” realism is usually pretty boring

» Games provide a small amount of feedback and
control compared to their real-life counterparts

) P U 'I
,v’.c l t b
TR AT = Vel LRSS




Cameras

« Al camera models are usually motivated by:

— Gameplay goals
* Need to see player
* Need to see important Al entities
* Intuitive controls
— Cinematic goals
« Show what the player needs to see
* Look cool




Camera Models

« Simple camera models:
— Fixed: the camera never moves
— Tracking: the camera doesn’t move, but points at an interesting
object
— Follow: the camera follows at a distance behind the target
* More sophisticated camera systems handle things like:

— obstacle avoidance

— framing




Camera Models for Driving Games

» First-person
— Glue camera to the bumper

— Tune field-of-view to create enhanced sense of speed
» More effective than tuning actual vehicle speed

e Third-person

— Camera tracks behind the car at some distance

— Perfect tracking doesn't look good
e Car is locked to the centre of the screen




Summary

« Gameplay is huge
— Touches on every part of the system
— Needs every trick from the bag

« Many areas weren’t covered

— Path finding
« Will talk about it in the driving lecture
— Enemy Al




