
Gameplay

1

Introduction

• What do we mean by gameplay?
– Interaction between the player and the game

• The distinguishing factor from non-interactive media like film
and music

– Sometimes used interchangeably with “game mechanics”
– This is where fun lives

• Gameplay components
– World representation
– Behaviour simulation

• Physics
• AI

– Camera

Levels of gameplay

• Second-to-second
• Where is this missile moving next frame?
• Has the enemy parried my attack?
• “The simulation”

• Minute-to-minute
• What is the players current objective?
• “The mission script”

• Hour-to-hour
• What skills have I unlocked?
• Empire-building
• “The meta game”

World Representation

• This is what changes as a result of player
interaction
– The AI also needs to keep track of what is going on in

the game
• A very simple example:

– We can represent a tic-tac-toe board as a two
dimensional array of characters

• A slightly less simple example:
– Pac Man consists (minimally) of the locations of Pac Man

and all the ghosts, locations of the walls, and positions of
the active pellets

• More complicated games typically do not have a
fixed set of game entities
– Need a dynamic data structure to manage entities

World Representation Requirements

Some important first questions:
– How large is the world?
– How complex is the world?
– How far can you see?
– What operations will be performed?

• Visibility
• Audibility
• Path finding
• Proximity detection
• Collision detection
• Sending messages to groups of entities
• Dynamically loading sections of world

– If so, how fast can you travel?

World Representation: Lists

• Simplest approach: one big list
– All search operations are pretty expensive
– But all operations are about the same

• i.e. no slower to search by name than by position
– Storage space and algorithm complexity are low
– Good for extremely simple games (< 100 entities)

• Can make it a little more useful with multiple lists
• In more complicated structures each world node

will have a list of entities in that node

Spatial World Representation

• Spatial data structures
– K-D trees
– BSP trees
– Grid
– Graph
– Whatever

• Dictionary
– Spatial hashing

• Hybrid
– Big games use multiple techniques at the same time
– or different techniques for different kind of data
– each optimised for the particular queries on that data

Sphere of Influence

• Rather than simulating thousands of entities in a
large world, many games maintain a small bubble
of activity around the player
– Or around the camera
– Could be somewhat off-centre

• Keeps the activity centered around the player
• The world outside the sphere is downgraded in

fidelity, or shut off entirely
– Typically multiple spheres for different types of entities
– Typically tied to level-of-detail (LOD) systems

• Entities can be recycled as they leave the sphere
– Strive to recycle objects that aren't visible
– Or fade them in/out gently in the distance

Entity Behaviour

• We want our entities to do interesting things
• Two major strategies employed:

– Scripted behaviour
• as in acting, where an actor follows a script
• good for drama

– Simulated behaviour
• let the rules of the world do their thing
• good for novelty

• For example, consider the FPS cliché of the
exploding barrel
– How do we model this behaviour?

Scripted Behaviour

• Explicitly add individual behaviours to entities

function barrel::collide(hit_by)
 if hit_by.type == bullet
 damage += 10
 if damage >= 100
 PlayAnimation(exploding)
 PlaySound(exploding_barrel)
 DestroySelf()
 end
 end
end

Comments

• Simple to implement
• Good for one-off, unique game events

– Cut-scene triggers
• Not flexible
• Misses out on emergent opportunities

– No chain reaction explosions
– Doesn't explode when hit by rockets

• unless explicitly modified to do so
– No splash damage

• Extending this model to complex interactions
makes the code unwieldy
– Numerous permutations have to be explicitly coded

Simulated Behaviour

• Define a few high-level rules that affects how
objects behave

• Combine these rules in interesting ways when
objects interact

• Properties of objects:
– GivesDamage(radius, amount)
– MaxDamageAbsorb(amount)

• Object will “break” if it absorbs enough damage
– BreakBehaviour(disappear | explode)

• Disappear destroys entity
• Explode destroys entity, and spawns a shock wave entity in

its place

Entity Properties

• Entities in this example, and their properties:
– Bullet

• GivesDamage(0.01, 10)
• MaxDamageAbsorb(0)
• BreakBehaviour(disappear)

– Barrel
• MaxDamageAbsorb(20)
• BreakBehaviour(explode)

– Shockwave
• GivesDamage(5.0, 50)

Explosion Behaviour

function entity::collide(hit_by)
 damage += hit_by.GivesDamage.amount
 if damage > MaxDamageAbsorb
 switch BreakBehaviour
 case disappear:
 DestroySelf()
 case explode:
 Spawn(shockwave, my position)
 DestroySelf()
 end
 end
end

Comments
• Observed behaviour the same as the first example

– when a lone barrel is shot
• A lot of nice behaviour can emerge

– Cascading barrel explosions
– Non-bullet objects causing damage can be added easily
– Splash damage

• Easy to add new properties and rules
– A rocket is just a bullet with BreakBehaviour = explode
– Different damage classes

• e.g. electrical damage that only harms creatures, but doesn't affect
inanimate objects

– CanBurn, EmitsHeat properties with rules for objects bursting
into flames

• It doesn't take many of these rules to create a very rich
environment
– Be careful about undesired emergent behaviour

Triggers
• Very common way to initiate entity behaviour
• Common types:

– Volume
– Surface
– Time

• When the trigger condition is met (player occupies trigger
volume, timer runs out, etc.):
– Send event
– Run script
– Execute callback

• Triggers can be
– One-shot
– Edge-triggered
– Continuous

• Games typically have a well developed trigger system
available

AI

• Video games use a unique definition of AI
– A lot of what games call “AI” isn't really

intelligence at all, just gameplay
– AI is the group of algorithms that control the

objects in the game
– It is the heart of the game, and often has the

most influence on how much fun the game is

• Making the AI “smart” is not the hard part
– The game is omniscient and omnipotent, so it

can always kick your ass if it chooses to
– The trick is in making AI that is challenging yet

realistically flawed

State Machines

• State machines are used to control moderate to
complex AI behaviour

• Often implemented in an ad-hoc manner with a big
switch statement
– Fine for relatively simple behaviour

• Commonly implemented in script
– Still just a switch statement with lots of syntactic sugar

• Or you can build a graphical state machine editor
– Supporting nested machines
– With event handling
– Transition scripts
– Etc

Mapping Events to Behaviours

• The AI interprets a button press as an intention to
perform a certain action
– Call a function, run a script, set a variable

• Often this is a simple mapping, but it can become
complex depending on the game
– For example, some games have camera-relative controls
– Fighting games require queueing of inputs for combos

• There are constraints on allowable behaviours
– These constraints can be quite complex

• Physical constraints
• Logical constraints (rules)

– E.g. conditions on state transitions

Physics

• What do we mean by physics
– Rules by which objects move and react in the gameplay

environment
• Q: But isn’t this the same as AI?
• A: To a large extent it is

• Physics doesn't necessarily imply a sophisticated rigid body
dynamics system
– Pong modelled ideal inelastic collisions pretty well

• In fact, “real physics” is usually just a tool in the box
• Game physics implementers have considerably more latitude

to change the rules
– A lot of physics can be “faked” without going to a dynamics

engine
• How is physics used in a modern game?

Uses of Physics

• Collision detection
– Detect interactions of entities in the environment, e.g. triggers

• Animation
– Complex shapes and surfaces (chains, cloth, water)
– Realistic environment interactions (bounce, tumble, roll, slide)
– Reaction to forces (explosions, gravity, wind)
– Augment “canned” animation with procedural animation
– Hit reactions, “rag doll”

• Gameplay mechanics
– Physics puzzles
– Driving, flying
– Damage calculation

• Sound triggering

AI Use of Physics

• Generally the AI keeps the physics system reigned in
– Objects only go into “full simulation mode” under specific

circumstances and often only for a limited period of time
• Example from Prototype and Cyberpunk 2077:

– Traffic cars generally slide around the world "on rails"
– If an object appears in the car's “visibility cone”, it comes to a

gradual stop
– Traffic cars in “rail mode” can impart forces on other objects (peds)
– If the car collides with another car, the AI puts them into full

simulation
• AI computes an impact force based upon collision information, and

tunables
• Car is placed under control of the rigid body system, and allowed to

bounce around until it comes to rest
• Then the car is put to sleep (removed from rigid body system)
• If it’s damaged it never returns to AI control

Interactions Between Objects

• So, some objects are under physics control, while
other are under AI control

• What happens when they collide?
– To the physics system, AI controlled objects don't follow

the rules
• Velocities, positions are under AI control
• Properties like mass, and friction, and restitution may not be

defined for AI controlled entities
• There needs to be a mechanism to compute

plausible forces to pass to the physics system to
apply to the simulated object

• Likewise, the AI controlled object will have some
sort of collision response programmed into it
– Play animation, move object, apply damage, trigger

sounds, change entity state, etc.

Physics Hand-off

• When the AI places an object into full simulation, it
sets up the initial conditions for the object's rigid
body
– Position, velocity, angular velocity

• In the simplest form, the AI-managed position and
velocities are copied into the rigid body

• There may be considerable massaging of the
conditions to make the response more interesting,
or realistic-appearing

• Example from Hulk 2:
– When Hulk elbows a car, angular velocity is carefully

chosen to make it launch up into the air, tumble end-over-
end (with variation), and land close behind him

– Thrown objects are kept out of general physics simulation
until they hit something

Tuning

• Physical simulations can produce a lot of emergent
behaviour

• This can be good
– Adds variety to gameplay and presentation
– Players can discover or create situations that weren't

envisioned by the designer
• This can be bad

– Players can discover or create situations that weren't
envisioned by the designer

• Exploits, bugs, other bizarre behaviour

• Emergent systems are hard to tune!

Realism, Accuracy and Fun

• Realism is a powerful tool, but it is not the end goal
for video games.

• There are differences between what people believe
is realistic, and real-world behaviour.
– “Real” realism is usually pretty boring

• Games provide a small amount of feedback and
control compared to their real-life counterparts

• Physical simulation and hacks can live comfortably
side-by-side.

Cameras

• AI camera models are usually motivated by:
– Gameplay goals

• Need to see player
• Need to see important AI entities
• Intuitive controls

– Cinematic goals
• Show what the player needs to see
• Look cool

• Camera design is primarily an AI / gameplay issue
– Not rendering!

Camera Models

• Simple camera models:
– Fixed: the camera never moves
– Tracking: the camera doesn’t move, but points at an interesting

object
– Follow: the camera follows at a distance behind the target

• More sophisticated camera systems handle things like:
– obstacle avoidance
– framing
– line of sight

• Instant replay camera:
– Scripted camera animations
– User controlled cameras

• Artists controlled cameras
– Shot setup and animation done in 3D modeling/animation tool

Camera Models for Driving Games

• First-person
– Glue camera to the bumper
– Tune field-of-view to create enhanced sense of speed

• More effective than tuning actual vehicle speed

• Third-person
– Camera tracks behind the car at some distance
– Perfect tracking doesn't look good

• Car is locked to the centre of the screen
– Add lag and anticipation to the camera movement

• When braking, move camera closer
• When accelerating, move further
• Look into direction of turns
• Lower/raise camera based on velocity of car
• Don't spin camera right away if the car is spinning

Summary

• Gameplay is huge
– Touches on every part of the system
– Needs every trick from the bag

• Many areas weren’t covered
– Path finding

• Will talk about it in the driving lecture
– Enemy AI

• Too wide and game-specific to cover here
– AI animation control

