
Game Engines

1



Overview

∙ Game engines are a significant part of the modern 
games industry

∙ Middleware
∙ Game engines
∙ Why use an engine?
∙ Unreal and Unity
∙ Why don’t we use engines in this course?



Middleware

∙ Some parts of a game are difficult to build, and also not 
very game specific
∙ Rendering, physics, sound, front-end tools, etc.

∙ Many developers created central teams to build shared 
technology, allowing them to spread the development 
costs across several games

∙ Smaller developers didn’t have or couldn’t afford central 
development

∙ A market was born



A history of middleware

∙ Around the launch of the PS2 (2000), several companies 
began to license their technology:
∙ Rendering

∙ Renderware, Gambryo
∙ Physics

∙ Havok, Mathengine
∙ Movie player

∙ Bink
∙ Sound

∙ FMOD
∙ Mostly single purpose libraries

∙ Varying effort involved in integration with existing games:
∙ Bink (memory, file I/O, rendering)
∙ Havok (all of the above, loading, gameplay / AI, etc)



Game engines

∙ The Quake engine (1996)
∙ PC only
∙ 3D hardware acceleration added later
∙ Spawned many derivative engines

● Quake 2 engine: basis for Half-Life and Source, 
Call Of Duty

∙ Unreal Engine (1998)
∙ Modular architecture
∙ UnrealScript

∙ CryEngine (2004)
∙ Unity (2005)
∙ Multi-platform: Web plugins, PC, mobile, consoles



Why use an engine?

∙ Many hard problems are solved for you
∙ Content tools and pipeline
∙ State-of-the-art rendering technology
∙ Multi-platform support
∙ Cross-domain integration
∙ Easy prototyping of new game ideas
∙ Trade some performance and flexibility for 

development time
∙ Buy vs build
∙ Many developers license an engine
∙ Others use internally-built engines (e.g. Frostbite)

∙ Can aid recruitment / retainment (de facto standards)

∙ 'Standalone' console games are now rare



Unreal Engine



History of Unreal Engine

● Dates back to 1998, used for Unreal (single-player FPS) 
and Unreal Tournament (fast-moving multiplayer FPS)

● Mostly the work of Tim Sweeney, who is still CTO

● Rapid prototyping tools (e.g. CSG) made it popular

● UnrealEngine 2 (2002, America's Army): cinematics, 
Maya/Max integration, Xbox support

● Ported to 3DS in 2011!
● UnrealEngine 3 (2006, Gears Of War): PS3/Xbox 360, 

iOS, WiiU, HTML5, async rendering, shaders

● UnrealEngine 4 (2014): real-time lighting, faster iteration, 
script debugging



Unreal Engine highlights

∙ Unreal Editor, “Play In Editor” feature
∙ Multithreaded rendering engine
∙ Level construction tools
∙ Scaleform UI toolkit (replaced with their own UMG)
∙ PhysX physics integration
∙ Scripting
∙ Kismet and UnrealScript in UE3
∙ Blueprints in UE4

∙ UE3 was used to ship more than 300 games
∙ UE4 was used for the latest Gears of War
∙ Licensing model has opened up considerably



∙ Built in Level/Texture streaming, asset management
∙ Large amount of sub(licensing) to middleware

- LiveCode, Quixel, Maya Live Link … etc
∙ Blueprints compile to native C++!
∙

Unreal Engine highlights



Unity



Unity highlights

∙ Multiplatform
∙ Web, Windows, Mac, Linux
∙ iOS, Android, Blackberry 10, Windows Phone 8
∙ Consoles (comparatively late - 2013+)

∙ Rapid iteration through integrated editor
∙ Scripting through C#, Javascript or Boo (Python)
∙ Broad support for different game genres

∙ Pathfinding, animation, 2D components, audio, physics, 
terrain, visual effects

∙ Not an AAA competitor to UnrealEngine until recently:

∙ Unstable / inadequate framerates, no console support
∙ Shovelware reputation – paradoxically because of ease of 

use, asset store
∙ But there are now games where you wouldn't guess they 

were in Unity without seeing the legals



Unity Game Objects

∙ GameObjects are containers for Components
∙ Tag, Layer, Name, Static flag
∙ AddComponent(TypeName)

∙ Components
∙ Mesh imported from 3D package
∙ Animation controller
∙ Box collider
∙ Write your own in C# very quickly



Unity Nativization

∙ Moving towards a ECS-style system (Untiy DOTS)
∙ Burst compiler transforms .NET Bytecode/IL to native 

assembly code
∙



Why don’t we use an engine in this course?

∙ You need to know how an engine works to use it well
● Working at a lower level evens the playing field

∙ Game engines are an important tool for game 
development, but they’re rarely the only tool you’ll need
∙ Depending on the game you’re building, an engine 

may need significant modification
● Everyone used to rewrite the UnrealEngine 

animation system the moment they licensed it

∙ Understanding how the engine is built is critical
∙ You'll still need to write bespoke tools, even if they 

plug into an engine-provided pipeline
∙ It will make you a better programmer!

∙ In the games industry, you often need to know the 
low level details!



Summary

∙ Most games these days are built with an engine
∙ Unreal and Unity are the big ones, but there are other 

engines available
∙ Lots of internal engines too
∙ Both Unreal and Unity have free versions that are worth 

studying
∙ Plenty of high-quality free/cheap training resources 

online
∙ Consider a company's tech and engine usage when 

deciding whether to apply for a job


