
Graphics

1

Introduction

● A glimpse into what game graphics programmers do
● System level view of graphics architectures & pipelines
● Intro to commonly used rendering techniques in games

2

Game Graphics Programmers

• Create infrastructure to realize artistic vision of product
• Work closely with Art Director
• Work closely with artists to define art production

requirements
• Utilize the hardware and APIs of the target platforms
• Integrate renderer with other game components

• Art pipeline, AI, front-end etc.
• Achieve interactive performance
• Work with memory constraints

What do you see?

• Info Here

How would you render this?

Lots going on here:
• Objects (car, road,

ground, bushes, driver)
• Sky
• Lighting (direct and

indirect)
• Material properties –

transparency, specular
• Reflections
• Shadows
• Motion blur
• Color correction

Deconstruct the Art Direction: What do you see?

• Info Here

• (To switch between regular layout page 1 and 2 – right
click on the slide goto> Layout and pick the other version
from the graphic representation of the different pages)

• Info Here

• (To switch between regular layout page 1 and 2 – right
click on the slide goto> Layout and pick the other version
from the graphic representation of the different pages)

Overall style: “photorealistic”

Realistic materials

High contrast lighting

- bright lights & deep shadows
- Light sources at ground level and shadows deepen upwards

Saturated bright signs

Many small & coloured light sources

Atmospherics

High-detail, dilapidated buildings & streets

Reflective, wet looking streets

Night sky

Several characters in foreground

Deconstruct the Art Direction: What do you see?

Art Production Requirements

• Efficiently generate buildings & varied store fronts
• Generating reusable materials – shader + textures
• Decide geometry vs texture detail
• Create and place signage
• Create and place reusable street props
• Workflow for placing lights
• Specifying light volumes / atmospherics
• Specify secondary textures (grime, puddles)
• Build art for multiple level of details
• Character production pipeline

• Which has a whole list of their own

Rendering Requirements
• Direct lighting – spot lights, point lights, light cards
• Indirect lighting / ambient occlusion
• Static light sources
• Shaders (Asphalt, wet asphalt, brick, windows)
• Emissive (animated?) shader for neon signs
• High dynamic range
• Billboard for light volumes
• Skybox
• Reflection maps for puddles
• Etc ...

Rendering Pipeline

Quick overview of getting from the art tools to pixels on
screen

10

Elements of a Renderer

Offline Tools

Art Creation

• Artists create resources
• Models
• Textures
• Shaders?

• Off the shelf vs custom tools
• Off-the-shelf : Maya / Photoshop / etc.
• In house: Shader editor, level editor

• Exporter plugins

Art Pipeline

• Assets generally need some offline processing to be ready for in-
game use
• Export of geometry
• Optimization of geometry
• Texture compression
• Shader compilation

• Some elements of rendering may be generated here
• Baking lights
• Generating world representation
• Geometry -> bump maps
• And many more…

• Some portions may be hardware dependant
• Consoles can often compile to final shader code, PCs can’t

Scene Management

• Visibility determination
• Frustum culling – quickly reject objects that lie outside the

view frustum
• Occlusion culling – quickly reject objects that are in the

frustrum but covered by other objects
• Linear sort probably good enough, but there are some more

exotic data structures (octree, KD-tree, etc.)
• Level of detail (LOD) management

• Replace an object with simpler form when object is small on
the screen

• May involve simplifying shaders, animation, mesh
• Translucency sorting

• z-buffer will handle out-of-order draws of opaque stuff
• Translucent stuff needs to be manually sorted

Submit geometry to GPU for rendering

• Iterate through list of visible objects
• Iterate over each submesh-material pair
• Set render state based on material’s specification

• Set vertex and pixel shaders
• Set uniforms (parameters to shaders)
• Set a few other state elements (clipping, alpha

blending)
• Set vertex and index buffers

• Call DrawIndexPrimitive() or glDrawArray()

Performance

• Graphics hardware is deeply pipelined & highly parallelized
• Submit large vertex buffers
• Avoid state switching
• Reading from render targets causes stalls

• Rendering engine design considerations:
• Don’t chop the world up too finely

• Reduce draw calls
• Even at expense of drawing more off-screen

• Batching by state:
• Sort primitives by material type

• Minimize data access by CPU:
• Geometry, textures, display lists, positions are uploaded to VRAM once

per frame
• Minimize reading back from render targets

• Organize processing into multiple passes

GPU Pipeline

Vertices

Programmable vs. Fixed Function

• DX7/OpenGL 1.4/OpenGL ES 1.x and earlier hardware
used fixed function vertex processing
• Select from a limited set of states to configure

processing of components
• PS2, Xbox era consoles

• All modern hardware is fully programmable at the vertex
& fragment level

• Why do we care?
• Need to be aware of what portions of API are legacy,

particularly with OpenGL.

Vertex Components

• Position, colour, texture, normals, etc.
• For programmable processing, components of a

vertex are defined by the engine

// simple vertex format

struct Vertex

{
 float3 pos;

 float3 normalWS;

 float3 tangentWS;

 float3 color;// vertex color

 float2 uv0 // texcoords for diffuse, specular & normal map

 float2 uv1 // secondary texcoords e.g. for grime map lookup

}

Geometry Primitives: Triangle Lists

• Simply lists the vertices in groups of 3
• Lots of duplicate vertices

MSDN Direct3D Reference

Geometry Primitives: Strips & Fans

• Triangle strips & fans
• Generated by offline tools
• Reduce vertex duplication
• Predefined vertex orders

MSDN Direct3D Reference

Geometry Primitives: Index Triangle Lists

• Commonly used particularly with Programmable
pipelines

• Required to take advantage of GPU vertex caching

MSDN Direct3D Reference

Programmable Shaders

• Shader program accesses data by two methods:
• Registers – Input & Constant

• Input come from vertex stream, constants (uniforms) are set
from calling code

• Texture maps
• Input registers can be passed between vertex and pixel

shaders (‘varying’)
• Supports vector and matrix types intrinsically e.g. float3,

float4
• Float x[4] is not same as float4 x
• ALU performs math operations on 3 or 4 components in a

single instruction
• Registers are 128 bit wide

• Avoid use of conditional logic

Example vertex shader

varying vec3 normal;
varying vec3 vertex_to_light_vector;

void main()
{
 // Transforming The Vertex
 gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

 // Transforming The Normal To ModelView-Space
 normal = gl_NormalMatrix * gl_Normal;

 // Transforming The Vertex Position To ModelView-Space
 vec4 vertex_in_modelview_space = gl_ModelViewMatrx * gl_Vertex;

 // Calculating The Vector From The Vertex Position To The Light Position
 vertex_to_light_vector = vec3(gl_LightSource[0].position – vertex_in_modelview_space);
}

Example fragment shader

varying vec3 normal;
varying vec3 vertex_to_light_vector;

void main()
{
 // Defining The Material Colors
 const vec4 AmbientColor = vec4(0.1, 0.0, 0.0, 1.0);
 const vec4 DiffuseColor = vec4(1.0, 0.0, 0.0, 1.0);

 // Scaling The Input Vector To Length 1
 vec3 normalized_normal = normalize(normal);
 vec3 normalized_vertex_to_light_vector = normalize(vertex_to_light_vector);

 // Calculating The Diffuse Term And Clamping It To [0;1]
 float DiffuseTerm = clamp(dot(normal, vertex_to_light_vector), 0.0, 1.0);

 // Calculating The Final Color
 gl_FragColor = AmbientColor + DiffuseColor * DiffuseTerm;
}

Graphics Hardware Performance

• Vertex Processing Rate
• Depends on GPU clock rate & number of vertex ALUs

available
• No. of vertex shader instructions

• Fragment processing rate
• Depends on GPU clock rate + number of ALUs available
• No. of pixel shader instructions

• Pixel processing, texture fetch rate
• Depends on GPU/VRAM bandwidth

• Modern graphics hardware is massively parallel
• PS4 : 18 cores, 64 shader units per core = 1152 shader

units

Break

27

Rendering techniques

• How do we render individual types of things that model
some of the phenomena we want to capture?

• Huge number of techniques available

• Lighting

• Shadows

• Framebuffer Effects

• Billboards & Particles

Lighting

Defines the look of the environment

Many techniques – as much art as science

29

Uses of Lighting

• Can’t see anything without lights
• Directs the viewer’s eye
• Creates depth
• Conveys time-of-day and season
• Conveys mood, atmosphere and drama
• Express character’s inner state

Basic Lighting Calculation

• Lighting algorithms are concerned with:
• Properties of the lights:

• Color, intensity, shape, fall-off
• Properties of the surface:

• Shininess, roughness, color, transparency
• Refraction index

• Blinn/Phong lighting model
• Intensity = Ambient + Diffuse + Specular

• Implemented in pixel shader
• Allows lighting interaction to be specified per material
• Can model more advanced interactions by having a

“depth map” e.g. to model subsurface scattering

Light Sources

• Dynamic Lights
• Direct lighting is computed per frame at runtime
• Dynamic game objects will receive light
• Points, directional, spot

• Static Lights
• Used to light environment
• Captures direct and/or indirect lighting
• Compute offline & store e.g. vertex colors, light maps,

spherical harmonics coefficients
• Use a combination of techniques

• E.g. emissive objects
• May have special lights for characters and worlds, and

small subset that affect both

Image Based Lighting Approaches

• Modern games make use of image data for Lighting
• Specular Maps
• Normal Maps
• Environment Cube Maps
• Ambient occlusion maps

Normal Maps

• Normal vectors are encoded in RGB color channels
• Transformed from tangent to world space for lighting

computation
• More surface detail with less geo

With Normal MapWithout Normal Map created by David Maas

Environment Maps

• A cube map generated from six directions
• Map on to the six inner surfaces of a box at infinity
• Use to render reflections on reflective surfaces,

e.g. window panes
• Can be used for:

• Specular color: approximate roughness by sampling in
lower mips

• Luminance: if cube map
is HDR

Ambient Occlusion Maps

• Describes how much light each point of a surface
receives when uniformly lit

• Computed with offline tools
• Construct a hemisphere with large radius centered on

the point
• Determine what percentage of the hemisphere’s area

is visible from
the point (i.e.
how much of
the hemisphere
is occluded by
other surfaces)

Lots of dynamic lights

•Gamer: Oh, crap! Look at all those bad guys!
•Rendering Programmer: Oh, crap! Look at all
those dynamic lights!

Lots of dynamic lights

• Real world has lots of lights in it
• Light maps let you have as many static lights as you

want
• But what we really want is lots of dynamic lights

• Hard to get lots of dynamic lighting with conventional
techniques
• You tend to end up paying for it even when not

benefiting
• But, when there are lots of lights they tend to be small
• If we only render pixels touched by given light, cost is

manageable

Deferred Rendering

• The way to do this is to separate surface property
calculation and lighting

• Components needed in the lighting calculation are stored
in intermediate buffers (per pixel), e.g.
• Diffuse color
• Specular power, intensity
• Normals
• Depth

• Lighting computation is done in screen space – once per
pixel

• Geometry Pass:
• Render scene geometry, write lighting components to

G-Buffers

•Light Accumulation Pass:
• Initialize light accumulation buffer with “baked” lighting

components
• Determine lit pixels
• Render pixels affected by each light, and accumulate

Shadows

Commonly used techniques

42

Where did this guy jump from and how far is
he off the ground?

GDC 2010: Shadow mapping

A shadow...

• Grounds objects in the scene
• Generally it is better to have an inaccurate shadow than

none at all
• Gives hint of how high the object is from the ground
• Most commonly used techniques:

• Projected blob
• Projected texture
• Shadow volumes
• Shadow maps

Technique #1: Blobs

• Raycast to ground
• Draw textured quad
• Scale quad based on object’s height
• Multiple blobs for articulated objects

• E.g. One per leg
• Stretch and squash shadow based on object speed

Regular layout 2 (no arcade box)

47

Technique #2: Projected Texture

• Render shadow caster from perspective of light sources
into a temporary buffer
• Often use lower-complexity model

• Project result onto shadow-receiving surfaces in the world
• Similar to blob but requires an extra rendering pass
• Watch for aliasing

49

Technique #3: Stencil Volumes

• Compute silhouette edges of geometry with respect to
light

• Extrude edges in the direction of the light rays
• Draw scene to framebuffer updating z-buffer
• Clear stencil buffer (zero out)

Stencil Volume (cont’d)

• Turn off z-writes
• Draw front-facing polys of shadow volume (from camera

view point)
• front face of volume: increment stencil buffer

• Draw back-facing polys of shadow volume (from camera
view point)
• back face of volume: decrement stencil buffer

• If the backface of the shadow volume is not drawn
(fragment fails z-test) then stencil buffer value = +1

• Darken fragments where stencil is not zero.

Stencil Volume: Pros & Cons

• Pros
• Works for arbitrary surfaces
• Handles self-shadowing nicely

• Cons
• Hard edges
• Silhouette edge calculation is expensive
• GPU intensive (vertex processing, render target writes

& reads)

Technique #4: Shadow Maps

• Render scene from point of view of the light
• Save the depth buffer as a texture

• Shadow map texture contains z-depth objects closest
to it

Shadow Map (cont’d)

• Render the scene from point of view of camera. For each
vertex:
• Transform vertex position to light space.
• Interpolate light space coordinates between vertices
• Fragment position in light space
• Convert light space x,y coordinates to u,v
• Compare light space z-depth with depth stored in

corresponding texel of the shadow map

Shadow Maps: Challenges

• Can suffer from severe aliasing problems
• Need large shadow maps
• Pre- or post-filter shadow to reduce aliasing (also

gives soft shadows)
• Expensive: multiple passes required

Frame buffer effects

57

FrameBuffer Effects

• Utilize rendered data as a texture for subsequent operations
• Render-to-texture, frame-buffer-as-texture

• Examples:
• Motion blur
• Depth-of-field

• Copy rendered frame to off-screen buffer, and blur
• Using z-buffer as a mask, copy blurred frame to

rendered frame
• Refraction / reflection (Predator effect, heat shimmer,

water surface)
• Render or copy to offscreen buffer
• Composite with perturbed texture co-ordinates

• Colour correction

Guerrilla Games Killzone 2 Presentation

Color correction

• Technique commonly used in film but gaining popularity in
games

• Primary goal same as in film:
• Creative control over look to manipulate the mood of

the viewer
• Call attention to important visual elements

• Easy to art-direct & allows for changes late in production
• In games:

• can't tweak color with same precision since scene
content changes in unpredictable ways from frame to
frame

• Can be used to implement dynamic game state (such
as player's health)

Color LUTs

• Color Look Up Table
• Represent the RGB color space as a 3D texture
• 32 x 32 x 32 pixels (8 bit color)

• Use input RGB (from framebuffer), look new color in LUT
• Can be authored:

• Offline
• Using in-game Photoshop-like GUI e.g. Valve's

Source engine

Color Enhancement for Video Games – Siggraph ’09
(Used with permission fr author)

62

Authoring LUTs Out-of-Engine

• Create an “identity LUT”

• Flatten (e.g.) 32 x 32 x 32 cube into 1024 x 32 strip
• Grab (uncorrected) screenshot from the game and paste

“identity LUT strip” on it
• Give screenshot + LUT strip to artist to perform color

manipulations in external app
• Convert strip back to 3D LUT, import into engine

Color Enhancement for Video Games – Siggraph
’09

(Used with permission from author)

Billboards and particles

• Quads that are aligned to the camera
• Maybe only along one axis

Billboards and particles

• Good for implementing spacial effects (volumetric lights,
smoke)

• Can render using point sprites if fully aligned

Billboards and particles

• Align on one axis, good for foliage
• Can be expensive, tough to do alignment on GPU

• Need lots of extra information in vertices

Particles

• Particles are generally rendered same as billboards, but
have a complicated simulation

• (Almost) always done fully aligned

Skinning

• Skinning
• Continuous mesh with vertices weighted to a skeleton
• Complicated vertex transform that combines matrices

•Each vertex holds n (usually 4) indices and weights
into skeleton matrix list

• Can be done on GPU, but can be done on CPU for
performance reasons

Other important techniques

•Better approaches to handling transparency
• Depth peeling

•Forward+ (clustered) rendering
• Apply deferred-rendering-like techniques to forward

rendering
• Gives more flexibility than deferred techniques

•Physically-based rendering
• Be as consistent as possible across different types of

object
• Sample real-world materials and lights
• Compare to real world or non-real time rendering

approach for accuracy

Display Latency

• Several sources of latency in rendering system
• Controller, AI update, render, scan out, processing in

display
• Lots of techniques for improving visual fidelity increase

latency
• Double/triple buffering
• Motion compensation in TVs

• Crucially important with VR style hardware (Oculus Rift, et
al.)

Wrap up

• Graphics programming is a synthesis of many disciplines
• Ultimate goal is to realize the visual design of the game
• Know the hardware

• How do we process and render geometry
• Know the techniques

• Many and varied
• Watch what others are doing

• Follow the research
• Look at other games
• Check out the demos on Nvidia and ATI sites

