Physics

Overview

» Collision detection
— Model representation
— Dynamic vs. static
— Discrete vs. continuous
— Efficiency issues

* Collision resolution
- Event

) i ~ - c X ’ - - » : : L > ¢
e & L g =R 2 B > : Rorai Caa'ves A PrART N) d o a af s Fo=T 4 i
\ ¢ -y B b — - =y 144 A e > -

G\

Properties of a Good Physics Engine

« Fast
— Naive solutions eat up a lot of performance
— Designers will always push the limits of a physics engine

* Robust
— Stable and predictable under typical game frame-rates and
object interactions
* Doesn't “blow up” unexpectedly
— “Enough” accuracy

- .
-) J. - no s V!‘..

Collision Detection

* Find all relevant spatial interactions of objects in the
world

* |Input: physics world description
— Generally a simplified Al/rendering representation

e Output: object interactions

— Per-frame
— Usually a list of collision pairs
- — Information associated with interactions depends on how

Model Representation

« Triangle mesh
— Allows for collision detection against arbitrary shape
— Can be derived directly off rendering mesh

— Generally requires tuned hierarchical data structure to be
efficient

— Requires well-formed mesh (no cracks, T-junctions)
— Collision response can be tricky

 Convex hull

Model Representations Continued

« Simplified volume
— Sphere, ellipse, box (OBB), capsule, cylinder, cone

— Straightforward, closed form, geometric collision detection
formulas

— Efficiently models certain types of curved surfaces

— Requires artist to wrap meshes
* or a somewhat tricky automated system

* Height-field

Detection

» Collision detection is inherently O(N?)
— For each object, test it for collision with every other object
— Gets very slow very quickly
— Might be good enough for a small game though

« Fortunately, very few objects actually are interacting
each frame
— We hope

B) - '. —,‘J‘Ax ‘;._.'r “ ﬂ"'\ A ‘_‘ : e\ - ‘-.-! ‘7-\?. '_’.Pl)

Pair Filtering

« Some objects will never collide, so don't test them
against each other
— Objects that can't move (static world sections)

— Important enough that this is usually built into the low-level
collision system

 Distinction between static and dynamic objects
« Use semantics of game world to avoid collision tests
— E.g. objects attached to characters often have their collision

13 '_--’-|'J" ., D TLeA oA, el o)

Two Phase Detection

» Often, low-level collision detection is done in two
steps:
— Broad phase: rapidly find potential colliders, usually using
approximate bounding volumes
« Spheres, Axis Aligned Bounding Boxes (AABB)
» Sphere-sphere is much easier than mesh-mesh!

— Narrow phase: Brute-force compare potential colliders to find
actual collisions

-—1 'v.r-' . =

Broad Phase Strategies

« Spatial partitioning
— Grid
— Octree
— BSP tree

» Clustering
— Volume trees
— Sweep-and-prune

- & I P Ry IR [P Lt § §ais n' b
Shatial hachinc e Eamal - =)
(= e @]] » N1~ N T) B > . B ol 5 4 - ’

Rays

« Ray-casting is a very frequently performed operation
In a game
« Collision detection systems have to consider rays in
their underlying design
— “Tacked-on” ray casting algorithms tend to be inefficient
« Can overwhelm collision detection times
* Rays are different from other collision primitives

— Rays can be very long
— Often only concerned with the “first hit”

e Some suggestions:
— Model rays as line segments
— Keep rays as short as possible

— Bound short rays with AABBs
— Favour data-structures that return collisions in “ray order”

Discrete Methods

« Collision detection is typically performed once per
frame

» Discrete approaches test instantaneous positions of
objects, checking for overlap
— Majority of collision detection systems operate this way
— Algorithms well covered in literature

* Have to deal with penetration issues

— Carefully constructed detection routines to give sensible
results in moderate penetration cases

— Very deep penetration will be hard to deal with

« Time-step has to be small enough to catch all
collisions
— Bullet through sheet of paper problem

Continuous Methods

* Find the exact moment of contact
— Doesn't suffer from pass-through problems

« Easy with rays

« Considerably more work for complex objects with
multi-point contacts

« Hard for non-linear motion
— Ballistic trajectory
— Tumbling shapes

« Usually approximated by assuming linear motion
between frames
— Sweep-methods, interval arithmetic

» Higher per-frame cost than discrete
— But perhaps a larger time-step can be used

Resolution

 What a game does with detected collisions is called
resolution, or solving

« Many possibilities, some handled by the game logic,
others by the physics system itself:
— Ignore (objects pass through each other)
— Bounce (perhaps using dynamics engine)
— Stick
— Destroy one, or both objects (replace with special effect)
— Send event (for sounds, damage application, Al triggers)
— Apply force
— Deform
— Change state of one or more objects
— A combination of the above

* The resolution system must be flexible

Dynamics

A dynamics system is concerned with object positions
and orientations
— It can be thought of as physics-based animation system

Lots of uses and approaches
We'll briefly talk about rigid bodies
Won't talk about:

— Articulated objects (constraints)

4
5 =
‘ — o ‘l"—, N
e

Rigid Body Dynamics

* Rigid body
— Transform specifying position (centre of mass) and orientation
— Linear and angular velocity vectors
— Mass and mass matrix (inertia tensor)
— Collision primitive (box, sphere, capsule, etc)
— Material properties (discussed later)

» Useful methods:
— Get/Set velocity (linear, angular), positon

»
.-.
o’

.

-
YaYal [[t nNINT

Collision Solvers

« Two objectives
— Prevent object interpenetration
— Providing plausible collision response

« Two major cases
— Collision (“bouncing”)
— Contact (resting, rolling, sliding, friction)

-+ Variety of techniques

\
.....

Impulse Methods

* Pioneered by Mirtich and Canny [1]

 What is an impulse?
— Aforce applied over a very small period of time
— Impulses effect an instantaneous change in velocity

* For each collision point between two objects
— Examine the relative velocities of the two points
— If moving apart, do nothing

— Otherwise, compute and apply a pair of equal but opposite
impulses to the pair of rigid bodies at the collision points

— Requires collision point, collision normals, velocities, body
properties (inertia tensor, co-efficient of restitution, friction)

[I] Brian Mirtich and John Canny,“Impulse-based simulation of rigid
bodies,”

il‘\ Drr\rnar"hne A'F C\IMI\f\eillm N al Il"\fﬁlﬁﬂf‘fi\lﬂ Qn (:v'nnl'\ire IQQ:

Multi-point Collision

* For the best accuracy, impulses for all collisions
should be computed, and applied simultaneously

» This is difficult (see LCP solvers [3]), and could be
expensive

* |nstead, we can just apply the impulses sequentially,
and tolerate the inaccuracy

* For boxes, we can average collision points that lie on
the same face, which improves results.

[3] Erin Catto, “Iterative Dynamics with Temporal Coherence,” Game Developer
Conference, 2005.

Convergence

 After all collisions have been processed, some points
that were moving apart may be adjusted by other
Impulses

Improving Convergence

« Between two objects, solve deepest contact first

« Generate a “contact graph”, and solve contacts
bottom-up with respect to gravity
» Shock propagation [4]

— Process a level of the contact graph, then freeze the objects
for subsequent processing (set mass to « or equivalent)

Summary

« Collision detection and response are quite difference

« Physics engines are complicated and full of interesting
design choices

— Speed vs accuracy tradeoffs
— Stability tradeoffs

* You will never have to implement one from scratch,
but it is useful to have an idea of how they work

i X —e
L § -

=

4 4 =
- w. -
- { s

- _-'s‘_ l: .] .‘_'?__ =t p T -

