
Physics

Overview

• Collision detection
– Model representation
– Dynamic vs. static
– Discrete vs. continuous
– Efficiency issues

• Collision resolution
– Events
– Solvers

• Dynamics
– Rigid bodies
– Impulse-based collision solvers
– LCP solvers

Properties of a Good Physics Engine

• Fast
– Naive solutions eat up a lot of performance
– Designers will always push the limits of a physics engine

• Robust
– Stable and predictable under typical game frame-rates and

object interactions
• Doesn't “blow up” unexpectedly

– “Enough” accuracy
• We are not landing a probe on Mars

• Tunable
– Intuitive controls to change behaviour of objects

• No 15 Greek letter parameter friction models

• Extensible
– One-size-fits-all doesn't

Collision Detection

• Find all relevant spatial interactions of objects in the
world

• Input: physics world description
– Generally a simplified AI/rendering representation

• Output: object interactions
– Per-frame
– Usually a list of collision pairs
– Information associated with interactions depends on how

collisions are handled by the game
• Typical: colliding object ID's, points of contact, contact normals,

penetration depth

Model Representation

• Triangle mesh
– Allows for collision detection against arbitrary shape
– Can be derived directly off rendering mesh
– Generally requires tuned hierarchical data structure to be

efficient
– Requires well-formed mesh (no cracks, T-junctions)
– Collision response can be tricky

• Convex hull
– Several can be combined to define an arbitrary shape
– Established, efficient collision detection algorithms (GJK)
– Artists aren't good at manually creating convex hulls

• See www.qhull.org for an automated toolkit

Model Representations Continued

• Simplified volume
– Sphere, ellipse, box (OBB), capsule, cylinder, cone
– Straightforward, closed form, geometric collision detection

formulas
– Efficiently models certain types of curved surfaces
– Requires artist to wrap meshes

• or a somewhat tricky automated system

• Height-field
– Easy to create
– Very efficient collision detection, ray casting
– Unsuitable for general purpose use

Detection

• Collision detection is inherently O(N2)
– For each object, test it for collision with every other object
– Gets very slow very quickly
– Might be good enough for a small game though

• Fortunately, very few objects actually are interacting
each frame
– We hope

• We know things about the world that can speed things
up

Pair Filtering

• Some objects will never collide, so don't test them
against each other
– Objects that can't move (static world sections)
– Important enough that this is usually built into the low-level

collision system
• Distinction between static and dynamic objects

• Use semantics of game world to avoid collision tests
– E.g. objects attached to characters often have their collision

against them disabled
– We represent this with bit masks

Two Phase Detection

• Often, low-level collision detection is done in two
steps:
– Broad phase: rapidly find potential colliders, usually using

approximate bounding volumes
• Spheres, Axis Aligned Bounding Boxes (AABB)
• Sphere-sphere is much easier than mesh-mesh!

– Narrow phase: Brute-force compare potential colliders to find
actual collisions

Broad Phase Strategies

• Spatial partitioning
– Grid
– Octree
– BSP tree

• Clustering
– Volume trees
– Sweep-and-prune
– Spatial hashing

• Coherence
– Collision cache
– Prediction
– Relied on heavily in spatial sorting

• Cf. sweep-and-prune

Rays

• Ray-casting is a very frequently performed operation
in a game

• Collision detection systems have to consider rays in
their underlying design
– “Tacked-on” ray casting algorithms tend to be inefficient

• Can overwhelm collision detection times

• Rays are different from other collision primitives
– Rays can be very long
– Often only concerned with the “first hit”

• Some suggestions:
– Model rays as line segments
– Keep rays as short as possible
– Bound short rays with AABBs
– Favour data-structures that return collisions in “ray order”

Discrete Methods

• Collision detection is typically performed once per
frame

• Discrete approaches test instantaneous positions of
objects, checking for overlap
– Majority of collision detection systems operate this way
– Algorithms well covered in literature

• Have to deal with penetration issues
– Carefully constructed detection routines to give sensible

results in moderate penetration cases
– Very deep penetration will be hard to deal with

• Time-step has to be small enough to catch all
collisions
– Bullet through sheet of paper problem

Continuous Methods

• Find the exact moment of contact
– Doesn't suffer from pass-through problems

• Easy with rays
• Considerably more work for complex objects with

multi-point contacts
• Hard for non-linear motion

– Ballistic trajectory
– Tumbling shapes

• Usually approximated by assuming linear motion
between frames
– Sweep-methods, interval arithmetic

• Higher per-frame cost than discrete
– But perhaps a larger time-step can be used

Resolution

• What a game does with detected collisions is called
resolution, or solving

• Many possibilities, some handled by the game logic,
others by the physics system itself:
– Ignore (objects pass through each other)
– Bounce (perhaps using dynamics engine)
– Stick
– Destroy one, or both objects (replace with special effect)
– Send event (for sounds, damage application, AI triggers)
– Apply force
– Deform
– Change state of one or more objects
– A combination of the above

• The resolution system must be flexible

Dynamics

• A dynamics system is concerned with object positions
and orientations
– It can be thought of as physics-based animation system

• Lots of uses and approaches
• We'll briefly talk about rigid bodies
• Won't talk about:

– Articulated objects (constraints)
– Flexible objects (rope, hair, cloth, skin)
– Fluids (smoke, water)

Rigid Body Dynamics

• Rigid body
– Transform specifying position (centre of mass) and orientation
– Linear and angular velocity vectors
– Mass and mass matrix (inertia tensor)
– Collision primitive (box, sphere, capsule, etc)
– Material properties (discussed later)

• Useful methods:
– Get/Set velocity (linear, angular), position
– Get velocity of point
– Apply force, torque

• Integrator
– Updates the linear and angular velocity, position and

orientation of rigid bodies under the influence of forces at
each time step

Collision Solvers

• Two objectives
– Prevent object interpenetration
– Providing plausible collision response

• Two major cases
– Collision (“bouncing”)
– Contact (resting, rolling, sliding, friction)

• Variety of techniques
– Impulse-based methods
– Linear Complimentary Problem (LCP) solver

Impulse Methods

• Pioneered by Mirtich and Canny [1]
• What is an impulse?

– A force applied over a very small period of time
– Impulses effect an instantaneous change in velocity

• For each collision point between two objects
– Examine the relative velocities of the two points
– If moving apart, do nothing
– Otherwise, compute and apply a pair of equal but opposite

impulses to the pair of rigid bodies at the collision points
– Requires collision point, collision normals, velocities, body

properties (inertia tensor, co-efficient of restitution, friction)

Multi-point Collision

• For the best accuracy, impulses for all collisions
should be computed, and applied simultaneously

• This is difficult (see LCP solvers [3]), and could be
expensive

• Instead, we can just apply the impulses sequentially,
and tolerate the inaccuracy

• For boxes, we can average collision points that lie on
the same face, which improves results.

Convergence

• After all collisions have been processed, some points
that were moving apart may be adjusted by other
impulses

• Many iterations are needed to solve large stacks

Improving Convergence

• Between two objects, solve deepest contact first
• Generate a “contact graph”, and solve contacts

bottom-up with respect to gravity
• Shock propagation [4]

– Process a level of the contact graph, then freeze the objects
for subsequent processing (set mass to ∞ or equivalent)

Summary

• Collision detection and response are quite difference
• Physics engines are complicated and full of interesting

design choices
– Speed vs accuracy tradeoffs
– Stability tradeoffs

• You will never have to implement one from scratch,
but it is useful to have an idea of how they work

