
PhysX and Vehicles



PhysX

∙ Collision and Dynamics SDK (now) owned by Nvidia
∙ Included in UnrealEngine
∙ Includes a powerful vehicle driving model, which you 

should use
∙ We used to allow rigid body physics libraries but 

required building driving model from scratch
∙ Getting a good driving model is by far the biggest 

challenge for teams, and was often holding back 
game quality significantly



Installing PhysX

● Get SDK from https://github.com/NVIDIAGameWorks/PhysX
● Latest version is 4.1 – make sure you use the right 

documentation
● You don't need to register for an account to get this
● You DO need to register for an account to get PvD 

(visual debugger, quite useful)

● SDK comes as source – clone or download from GitHub
● Follow Quick Start instructions on GitHub page

● You need Visual Studio, CMake, and Python 2.7 
installed

● You will end up with a VS solution containing projects 
for all the PhysX libraries and all the samples

● A couple of sample projects will fail if you don't have 
DirectX SDK installed – doesn't matter

● We're going to concentrate on the SnippetVehicle4W sample

https://github.com/NVIDIAGameWorks/PhysX


Basics of PhysX Vehicle SDK

∙ Essential tasks
∙ Set up library
∙ Create world and floor plane
∙ Create some meshes
∙ Allocate simulation data
∙ Allocate actor and add to world
∙ Per frame : Set up inputs to drive and steering
∙ Per frame : Wheel raycasts
∙ Per frame : Tick simulation



Initialization

PxPhysics
Base context for all operations
Initialize visual debugger here if you want it



Initialization

PxCookingParams params(scale);
params.meshWeldTolerance = 0.001f;
params.meshPreprocessParams =

PxMeshPreprocessingFlags(PxMeshPreprocessingFlag::eWELD_VERTICES |
PxMeshPreprocessingFlag::eREMOVE_UNREFERENCED_VERTICES |
PxMeshPreprocessingFlag::eREMOVE_DUPLICATED_TRIANGLES);

mCooking = PxCreateCooking(PX_PHYSICS_VERSION, *mFoundation, params);

PxCooking
Utility class for creating meshes in physics
Converts a simple vertex stream representing a mesh into an 
internal structure which it can use for its own purposes
PhysX vehicles use meshes for all objects in vehicle system



Initialization

PxScene
Container for all objects in the simulation
Global world properties (i.e. gravity)



The ground

Without this your cars will fall forever ;)
Creating and adding simple objects with standard shapes is very 
straightforward
createDrivablePlane is a helper function which creates and 
returns a PxRigidStatic object
PxRigidStatic is the base class for rigid objects which aren't 
expected to move. There are helper functions to create planes, 
spheres, boxes, etc.
Note the 'material'. The parameters for the material include the 
coefficient of restitution. The material properties for two colliding 
shapes affect how PhysX will handle the collision.



Set up vehicle support

... that was suspiciously easy.



Mesh creation
For a convex mesh, the mesh cooker takes a stream of PxVec3 objects 
– the vert positions for each triangle in the mesh.
It produces a PxConvexMesh object which is PhysX's internal 
representation of a mesh optimized for its use.
Created meshes have a hard limit of 256 verts, so the more input verts 
there are, the more approximate the output mesh will be. If you want 
more complicated collision, cook a triangle mesh instead.



Vehicle description

● The function initVehicleDesc() creates a VehicleDesc 
object (this is a convenience class in the sample, not a 
PhysX class) containing lots of parameters defining the 
size and performance of the vehicle.

● Play with these numbers to get different behaviour. 
● The car in this example has six wheels, of which four are 

powered and the other two unpowered.
● The function createVehicle4W() is the starting point for 

creating the vehicle model and its simulation data, based 
off the VehicleDesc structure.



The actor for the vehicle

createVehicle4W found in 
SnippetVehicle4WCreate.cpp starts by making a 
mesh for a wheel and a mesh for the chassis. 
You will probably replace these later on.
A vehicle has a PxRigidDynamic object for its actor.
Note difference from ground plane (PxRigidStatic) – 
the scene knows that PxRigidDynamic actors will be 
moving around.

(createVehicleActor is a helper function in the sample code which 
actually makes a PxRigidDynamic object and adds the chassis and 
wheels to it as sub-shapes.)



Wheels setup

The sample calculates initial local poses for the 
wheels, i.e. where they are relative to the chassis. 
You'll need to supply these poses yourself when you 
come to use your own meshes.



Vehicle simulation setup

Trust the sample code, the 
sample code is your friend. 
Some of these numbers 
could be quite tweakable.



Putting it all together

This is the code which actually uses 
createVehicle4W to create a PxVehicleDrive4W 
object and add it to the scene.
Note that the vehicle object owns a rigid dynamic 
actor, and that's what's added to the scene. The rest 
of the vehicle object is the data and state to do with 
the car simulation (engine, wheels, gearbox, etc).



Per-frame actions
∙ The sample code puts the car through a series of 

manoevres – forward, backwards, turns, handbrake turns.
∙ It does this by populating gVehicleInputData with simulated 

keypresses or simulated analog stick data (based on 
whether gMimicKeyInputs is true or false). You should 
replace this code with actual inputs from the keyboard or 
gamepad.

∙ Then it applies this input data to the vehicle.
∙ Then it performs raycasts for each vehicle in the scene, to 

find out which wheels are on the ground.
∙ Then it updates each vehicle, using the raycast results. This 

function turns the wheels, updates the engine RPM, works 
out the car's current speed, and works out what forces to 
apply to the car model.

∙ Then it ticks the scene for 1/60th of a second.
∙ This all happens in the function stepPhysics()



Rendering the scene

∙ The snippet samples will render the scene for you if 
RENDER_SNIPPET is defined

∙ Otherwise you can see the scene in PvD
∙ Here's the standard render code in renderCallback()



Debugging

∙ PvD – PhysX debugger
∙ Separate EXE
∙ Needs additional setup when you initialize PhysX (as 

shown earlier) so the scene will talk to the debugger
∙ Debugger window lists actors, renders shapes and 

meshes
∙ Can show additional data like forces, velocities, normals
∙ If your rendered scene doesn't basically match this, your 

rendering is wrong ;)
∙ Disabled in 'release' config of PhysX



Rendered scene and PvD view of scene



Debugging

∙ Implement own basic debugging with getRenderBuffer()
∙ See SnippetRender.cpp: renderActors(...)



Integrating PhysX into your project

● Building the PhysX solution builds the libraries you'll 
need.

● Copy the libraries and header files into your game's 
repo and include / link them from there

● You'll need headers from physx/include and 
pxshared/include

● Also copy the DLLs. These have to be on the execution 
path when your game EXE runs (this usually means in 
the same folder)

● You'll find the built libraries and DLLs under physx\bin

● Release config is the fastest but doesn't support PvD. 
Profile supports PvD but doesn't check your data. 
Checked supports PvD and checks your data. Each 
config is correspondingly slower.



Things you can change

∙ Anywhere you see a hardcoded number in the sample 
code, it might be a worthwhile tweakable value

∙ Remember to adjust how many wheels your car has!
∙ Some values are documented, some are 'magic'
∙ Some numbers are not expressed in the units you might 

expect...

∙ The car and wheel meshes need to be replaced with your 
own meshes (sample ones are OK for milestone 2)

∙ Try other vehicle types – tanks, 6W drive (see 
SnippetVehicleCreate.cpp on creating other non-4W 
vehcile types vs SnippetVehicle4WCreate.cpp )



A word on collision...

∙ When the sample creates the car, it includes filter data 
which will be used by the scene's filter shader, indicating 
what kinds of surfaces the chassis and the wheels can 
collide with.

∙ Similarly when it creates the ground plane, this is flagged 
with the kinds of collision it will handle.

∙ If the wheels can collide with the ground, the car won't fall 
through it ;)

∙ You'll need to set the right flags for other objects that the car 
might 'collide' with (e.g. trigger volumes, pickups).

∙ For general collision information, read the PhysX help file. 
Basically you'll want to implement a collision callback, which 
will be called to inform you of each collision (and the two 
objects which collided).



Conclusions
∙ Use the PhysX vehicle SDK. It will save time and sanity.
∙ Mechanics of setup are complex - don’t be afraid to steal 

the PhysX sample code.
∙ The driving model in the PhysX sample app is now the 

baseline - need to make it better if you want good marks 
on the driving portion of things

∙ PhysX is generally very well documented. But also very 
extensive! Concentrate on what you need – mesh 
cooking, rigid body collisions, vehicles, raycasts.

∙ There are separate libraries for particles (including fluids) 
and for cloth if you're feeling incredibly ambitious, but 
don't get distracted ;)

∙ Remember to make a nice system for quickly reloading 
your tune-able variables and recreating your cars in 
PhysX – it'll save you lots of iteration time!


