DRIVING Al

N

Mg

e Ty &

Driving Al

« Al world representation
« Path finding
« Al driving

— Navigation

— Obstacle avoidance

World Representation

* Need some way to keep track of the world from a driving
standpoint
— Roades, intersections, etc.
— Other vehicles and dynamic obstacles

* Three levels of operation

— Navigation

* I'm here, need to go there on other side of map, how do | get there
around the static obstacles in the world?

The Road Network in Prototype

) F i 4 o : 2 4
:——M —— —¢ell:66 - async
i . Vs ' f44.42ms - 22.5 fps
—‘5 - | ——gp:30-45(29.98/30 80)ms
' 1E39.76(40.14/4088¢
© 5:30.55(31.29/339
, —spﬂ 64(1 65/2. _. hs

manhattanTeS’L‘cl 1%38 k

The Road Network in Prototype

» Navigation mesh
— Alist of polygons covering all navigable areas
— Polygons marked to be road, sidewalk, intersection, etc
— Neighbour information in each polygon edge

» Roads are formed by adjacent polygons marked as “road”

» Every road segment has a specified number of lanes
— Directional
— Every lane must have a match in adjacent road segments
— Lanes have a list of vehicles currently travelling along it
» Useful for querying if a lane is good to enter

Navigation Mesh

A* Pathfinding

« The workhorse of path finding in games

« Basic algorithm
— Two list of nodes “closed set” and “open set”

— Heuristic for estimating cost from node to target
 Straight line distance works pretty good

— Nodes on the “edge” of area you have checked are the open set.
« Initially only start point in open set.

— Each iteration, take node with lowest combination of actual

Other techniques

« Variable cost on paths
— Good way to implement jumps, shortcuts, roadblocks, etc

— Increase cost for nodes that you want to avoid

» Shouldn’t ever decrease cost, A* requires no overestimation of cost
for correct results

— Vary cost from time to time to implement random behaviour
* Moving through nodes

Driving Al Considerations

* High level types
— Traffic : Could be quite different, not even use driving model

— Opponents: Same basic capabilities as the player

» Could have same goals and driving techniques, or just same driving
techniques but quite different goals

* You only really care about opponents

 (Considerations
— Different states depending on current goals and situation

Opponents

* Opponents have same capabilities as player

* Generally want to use same input mechanism as player
does
— Al should steer a virtual gamepad, not modify things directly
— Opponents using traffic style cheats will feel strange

« Al entity will generally have few high level states

— Often based on proximity to player

lly also depends on ¢ d

Opponents

« Afew (possible) high level strategies

— Destination
» Uses navigation graph to generate a path (list of waypoints)

» Steers for the next point on the path or an interpolation between two
adjacent waypoints

— Intercept

 Pick intercept point that should catch player (not necessarily point
player is now, anticipation is better)

* Path find same as destination

(Some) Lower level Al Behaviours

* Driving
— Follow (relatively straight) navigation path

« Cornering

— Like driving, but may need to brake/e-brake and modify turn
parameters

« Passing
— Get around another vehicle

Driving

The path is a list of lane endpoints
— Calculated from path finding

« “Steer to” points
— Find closest point on path by checking distance to line segments
— Extend forward along path by fixed distances
— H&R used two with different distances (second used for
cornering)
« Use the difference between the current facing and the
vector to the “steer to” point to generate turning
— Be mindful of corners (see next slide)

* Floor it
— Al always uses full gas when just driving

— H&R used vehicle speed to tune difficulty, could also have speed
be fixed and give drivers an “aggressiveness”

Cornering

* Cruising logic doesn't work for corners
— At speed, turning is hard
— Tends to overshoot dramatically

 Need to detect when corner is approaching
— Difference in angle (Aa) between near and far steer to point

» Decelerate

— Establish speed limits for various Aa ranges
* Tunabl d surf

Passing

« Don't want to plough into other cars
— We took very simple approach to this (you can too if you need it)

« Watch for nearby car(s)
— Can get away with only handling one
— Often when there are several cars there is no good solution
anyway
— Check if another car is within some volume in front
« Can use the road segment’s list of cars for this

* |f you find a possible obstacle

— If road network allows it
» Check if the adjacent lane is free and change lanes

— Otherwise
» Shift steer to point to side and floor it
* Once past the car return to the original pathfinding algorithm

— To sell the effect try honking the horn and flashing the headlights!

Other Al Behaviours to Consider

Off-road

— If the navigation info is incomplete, may need different behaviour

Collecting

— Powerups, health, etc.

Stalking

— With ranged weapons, want to hold back once in range of player

Shooting
— Need to consider when to use weapons, if you have them

Conclusions

« World layout
— Need some sort of graph for path finding
— A* is your main navigation tool
Al
— High level behaviours (navigation / intercept / etc.)
— Driving and cornering

