Programming for
Performance

Textbook Definition of Real-time

A Real-time System responds in a (timely) predictable
way to unpredictable external stimuli arrivals.

A system is a real-time system when it can support the
execution of applications with time constraints on that
execution.

Real time systems

« Games are mostly real time systems, though with
lower costs of failure than most (aircraft fly-by-wire,
pacemakers, etc.)

. “Hard’

— Any lateness of results unacceptable
* “Firm”

Real Time Systems in Video Games

* \Video games have a variety of real-time systems
— No system in video games are hard real time
— Failures obviously aren’t as bad as in many real-time

systems

* Sound has firm constraints

— Hardware consumes data at 44 KHz (stereo)

— Any amount of dropout is very bad

— Can’t extrapolate to fill in the missing sound data

.

Real Time Systems in Video Games

« Rendering is a soft real-time system
— 60 fps (frames per second) or higher is ideal
— 20 fps is okay sometimes
— 5 fpsis no fun at all
— Some games are more sensitive (FPS, fighters, VR)

Characterizing performance

« Four important measures
— Latency (individual operation)
— Throughput (individual operation)
— Framerate
— CPU/GPU utilization

Latency

Total time for an operation to take place

Example:

— Time from initiation of Blu-ray read to time the head is placed over
the correct track: ~130 ms

When latency is high, systems need to be asynchronous
Operations off-CPU often have very high latency:

— Display, sound, input 10-50ms

— Disc storage: 20-150 ms

Throughput

« Amount of operations that can be completed in a
given time

 Example:

— Most standard computing performance measures
(TFLOPS, etc)

— Amount of data that can be read from an Blu-ray in one
second: ~50 MB

Latency and Throughput Together

« Latency and throughput must be considered together when
measuring performance
— Is a hard drive 2x faster than a Blu-ray, or 10x?

« Often one can be traded for another
— CPU example: deep pipelines to increase throughput
— GPU example: triangle throughput vs. state change latency

— Don’t concentrate solely on one to the detriment of another
* e.g. adding display latency can increase the frame rate of the
render, but it may make the controls feels sluggish
« Danger: throughput is more important than latency for most
non game applications, so hardware is optimized heavily for
that
— When trading higher latency for improved throughput, there is
usually a lurking catastrophic failure case
» Branch misprediction, cache stall, pipeline flush

Framerate

« Total time from completion of one frame to
completion of the next

* Good general measure of performance

« Often expressed as frames-per-second (60 fps) or
as milliseconds per frame (i.e. 16 ms)

Utilization

 Because systems are asynchronous, and may
have external constraints (e.g. vsync) different
systems may be running for different portions of
frame

« Game where CPU is running flat out for 30ms but
GPU is only running for 10ms has ‘worse’
performance than one where both are running for
30 ms

— You are leaving quality on the table, could get either better
performance or more stuff by balancing better

* Also applies to multi-core
— Want to balance utilization of cores as well as possible

What Should You Measure?

» Best case
— Good for selling things, but not useful for optimisation
« Worst case

— Must use this to ensure application always performs better than
lower-bounds

 Average

— Good indicator, but can be misleading if the performance can
spike

* Overall

Balanced Performance

* Player experience is balanced when it is:
— Smooth
* Throughput handles workload
— Responsive
« Always achieve better than maximum allowable latency
— Consistent
* No peaks or valleys

Optimisation Criteria

« Games have stringent performance constraints
— Display rate
— Sound latency
— Controller response
— Load time
— Network latency

c A Iaggy, slow choppy game is not fun

Optimisation Pressures

« Content demands outstrip capabilities of code

— Designers and artists always want more than you can
provide

— Puts positive pressure on programmer to improve system

« Hardware remains fixed, quality bar is rising
— Must out-do previous title, competition

« Games have much stronger optimisation pressure
then most software
— More “real-time” systems often have more constrained
scope
— More complex software often has softer constraints, or

ability to solve the problem by running it on better
hardware

Why Optimise?

« Appeal to a wider spectrum of hardware (PC)
— A game that only works on today’s state-of-the-art

hardware may shut out a large portion of your audience
(and sales)

» Facilitates better gameplay experience

— Richer content

— Faster, tighter controls

— Higher game reviews

TN 2
R ~rh-

When not to Optimise

* Optimised code has drawbacks

— Takes more time to develop

« Assembly takes more than 10 times as long as C++, but
isn’t 10x faster

— Compilers can and will beat you some (most?) of the time
— Maintainability / readability suffers

— Portability sacrificed

— Hard to debug

‘g 1\ s
A AL .
i a8

Y PR R s A

Common Wisdom: The 90/10 Rule

10% of the code takes 90% of the time

 When you find the 10% you can dramatically
iIncrease your speed just by fixing it

« The speed of most of the code doesn't matter, so

you don't need to worry about it
— Can waste a lot of time optimizing things that don't matter

* You need to make sure that you find the right 10%

« This is where good profiling tools and techniques
are essential

 But...

Death by a Thousand Cuts

« Sometimes the 90/10 rule doesn't hold

« Pervasive architectural problems and inefficient
techniques can hide performance issues where you
can't find them

— Language features and hardware quirks are common
culprits here, since they are resistant to many profiling
techniques

— So are over-designed and needlessly abstract systems
« The only way to fight against this is to be aware of
the costs of design choices up front

* You can't generally find and fix these problems
once things are nearing completion

How to Optimise

* Three steps:
— Find performance bottlenecks
— Fix them
— Repeat

How to Optimise

« Good optimisation is a combination of knowledge,
Intuition and measurement

* From Michael Abrash's, “Zen of Code
Optimization”:
— Have an overall understanding of the problem to be solved
— Carefully consider algorithms and data structures

— Understand how the compiler translates your code, and
how the computer executes it

Understanding the Problem

« Some questions to ask:

— How long do | have to work on this?

— Has this been solved before? (yes!)
» What are the differences?

— What are the characteristics of the data?
» Are there special cases?
« Where is the coherency?

— What can be computed offline?

Algorithms and Data Structures

« The most important aspect of fast code
— A bubble-sort in hand-tweaked assembly is still slow

— Have a toolkit of good general purpose algorithms
developed by smart people

* Quicksort, A*, hashing, etc.
« “Big O” analysis is useful
— |In practice, we are less formal about it
— Remember that 'n’ and ‘c’ matter in real code!

Finding Bottlenecks

* Intuition (guessing)
— Helps if you are familiar with the algorithm/code

— Don't trust it alone though!
« Can be misleading, or just plain wrong

* Profiling
— Measure performance to find hot spots

— Many tools available:
 Algorith ‘:‘ag}al '

Counters and Metrics

« Various counters and metrics should be built into
the game:
— Frame rate counter
— Rendering statistics
« Triangle count, textures used, etc.
— Memory used per pool
— Network ping time
llision test f

Isolation Profiling

» |solate components in a running game to
determine their contribution to the frame rate:

— Disable parts of the renderer

 World

* Characters

» Special effects
— Turn off sound
— Turn off collision

AL

Instrumented Profiling

 Instrumentation profiler

— Places code at the beginning and end of every function to
record timings

— Gives accurate tallies of function frequency, total function
time, etc.

— Records call graph
— Intrusive since code is changed

affect accuracy of timing

Sampled Profiling

« Sampling profiler
— At regular intervals (e.g. 1 ms), the current program
counter is recorded

— Later, the samples can be tallied and cross-referenced
with the source code

— Fast, non-obtrusive
— Works on non-instrumented code

e Downsides

System Trace

» Specialized tool for catching certain types of
things that other forms of profiling can’t

« Capture various kinds of system events
— System library calls
— Context switches or other thread events
— OpenGL calls

« (Generate some visualization of the trace

Compilers

Speed is lost in the translation of C/C++ to machine code
— Compilers are sophisticated but dumb
— Narrow view of program at any given time
— No concept of “the problem”
Don’t waste time trying to beat the compiler on its strengths

— Compiler will optimize how you are doing something, you need
to optimize WHAT you are doing

Understand the optimization options of the compiler

mEIEE

 Modern computers are characterised by:
— Fast CPU
— Deep pipelines
— Slow memory
« Some good algorithms perform poorly in practice
— Poor cache locality
— Unpredictable branching
igh memo ag

Caches

« Cache friendly algorithms are incredibly important

« Try computing information instead of storing it.

Consider this:

— Most modern CPUs have L2 cache miss latencies in the range of
100-300 cycles.

— If you can compute the value in 50 cycles that would have been
read from main memory, you've gained 2-6X performance

— There are many opportunities to do this
*» E.g.storea transform as a translation & quaternion (7 floats)

St
SLEC

Optimisation Mantra

» Constantly challenge assumptions
— Profile, profile, profile!
« Be creative and a little bit crazy
— Optimisation is very non-linear
— It takes a big bag-of-tricks to be effective
— Practice!

 Know how deep to go

Techniques

Multithreading

« All hardware we care about is multithreaded
— No one is even shipping single core phones any more

« Multithreading is probably the most important
optimization technique right now

— If you properly multithread a game, and you have 4
cores, you could quadruple the performance

* A couple of different approaches

— Heavyweight threads

— Job based

— Local optimization (OpenMP, OpenCL)
* Lots of new bugs though

— Deadlocks, race conditions, memory stompage, etc
— Need a strong safety and debug harness

Pre-computation

* Do the tough calculations offline

— Static lighting (light maps, ambient occlusion maps,
spherical harmonics)

— Potentially visible set (PVS) calculation
« This is the classic speed/memory trade-off

Caching

“All programming is an exercise in caching”
-Terje Mathisen

« Take advantage of coherency by storing frequently
used results for quick retrieval

« This technique pops up everywhere

* CPU caches

i
2.

12 A

Lazy Evaluation

« Defer expensive calculation until result is required
— If you are lucky, the result isn't needed at all

 Examples
— Store dirty flags
— Copy-on-write

 Instances of a process share the same physical memory
until one modifies a given page

Data Organization

» Cache friendly data structures
— Small == fast
— Fit into cache line width
— Walk linearly

 Array of structures vs structure of arrays
SHElE e shruEtaf

iloatve i lleoatodil Oy O ez Q]
d dzdi ' float d ‘; 10 I

Early Out

« Perform a simple test to avoid a costly operation

1if (OnScreen (object.BoundingSphere()))
{

object.Draw () ;

Approximation

« Trade accuracy for speed
— Simulate gravity, but not collisions, for particles
— Render at a lower resolution and scale up
— Use Taylor Series or other mathematical approximations
» Be aware of error bounds
— Look-up tables
» Restrict the range of inputs
— Often opens the way for pre-computation

Divide and Conquer

* Break a problem into smaller sub-problems and
solve each independently
— Binary search
— Quicksort
— BSP trees or other spatial hierarchy

» Particularly effective if computation of the pieces
can be parallelized

Time-boxing

« Amortize expensive operations over multiple
HEINES
— Partially processed job queues
— Work to fixed time budget

» Doesn’t necessarily improve average performance,
but can improves worst case

Strength Reduction
* Replace costly operations with equivalent cheap
operations

a = a/ 16; // divide (=40 cycles)
a = a >>4; // shift (=1 cycle)

. Compllers are very good at thls
i © ,ller will

SIMD

« Operate on multiple (usually floating point) values
In the same operation

« Useful for many graphics and audio-related
operations

— Vector and matrix operations

— Particle systems

— Skinning

ST
O

Assembly

« The last word in (micro-)optimisation
— Unless you know how to build your own chips

« Use instructions the compiler doesn'’t, or things that
can’t be expressed in C++
— Conditional writes, bit rotates, cache prefetches, etc.
— Different register preservation semantics

N I ~
a@:% CA| &5 U
o s A Reaar) e b et

Other Low-level Techniques

Inlining

* Pipelining

Loop unrolling
Coiled loops
Code generation

GPU acceleration

« QOperations that are SIMD friendly can often be
moved to the GPU on modern hardware
— GPU'’s are significantly faster at this sort of thing

» Lots of applications
— Image processing
— Portions of physics

pUdlil

%

Summary

* Practice makes perfect

— Understand the fundamental performance characteristics
of the systems you are implementing

— Develop a repertoire of performance friendly techniques
— Profile relentlessly
— Become familiar with your compiler and hardware

« Speculation can be dangerous
« Choose efficient, transparent algorithms

oMm AT NY 7] .s‘, \N O 7 \N Q|
3 o | | B AN A e o y \
T ”’3513‘*‘* | Uiat I i 5?;?-, AR W @ AR

Quotes

Rules of Optimisation
Rule 1: Don’t do it.
Rule 2 (experts only): Don'’t do it yet.
- M.A Jackson

"...premature optimisation is the root of all evil.”

