
Programming for
Performance

1

Textbook Definition of Real-time

A Real-time System responds in a (timely) predictable
way to unpredictable external stimuli arrivals.

A system is a real-time system when it can support the
execution of applications with time constraints on that
execution.

 - Dedicated Systems Encyclopedia

Real time systems

• Games are mostly real time systems, though with
lower costs of failure than most (aircraft fly-by-wire,
pacemakers, etc.)

• “Hard”
– Any lateness of results unacceptable

• “Firm”
– Occasional lateness is not a total system failure

• Could be significant quality degradation
• Results cannot be used past deadline

• “Soft”
– Rising cost of lateness

• Quality degrades the later you get

Real Time Systems in Video Games

• Video games have a variety of real-time systems
– No system in video games are hard real time
– Failures obviously aren’t as bad as in many real-time

systems
• Sound has firm constraints

– Hardware consumes data at 44 KHz (stereo)
– Any amount of dropout is very bad
– Can’t extrapolate to fill in the missing sound data

• Sound also has soft constraints
– Sound must correlate with visual or input events

Real Time Systems in Video Games

• Rendering is a soft real-time system
– 60 fps (frames per second) or higher is ideal
– 20 fps is okay sometimes
– 5 fps is no fun at all
– Some games are more sensitive (FPS, fighters, VR)

Characterizing performance

• Four important measures
– Latency (individual operation)
– Throughput (individual operation)
– Framerate
– CPU/GPU utilization

Latency

• Total time for an operation to take place
• Example:

– Time from initiation of Blu-ray read to time the head is placed over
the correct track: ~130 ms

• When latency is high, systems need to be asynchronous
• Operations off-CPU often have very high latency:

– Display, sound, input 10-50ms
– Disc storage: 20-150 ms
– Network: 100+ms

• Some latency elements are outside our control
– Wireless controllers, wireless headphones, motion smoothing on

TVs
– Dissociation if latency get’s too high

Throughput

• Amount of operations that can be completed in a
given time

• Example:
– Most standard computing performance measures

(TFLOPS, etc)
– Amount of data that can be read from an Blu-ray in one

second: ~50 MB
– Vertex or pixel processing rate

Latency and Throughput Together

• Latency and throughput must be considered together when
measuring performance
– Is a hard drive 2x faster than a Blu-ray, or 10x?

• Often one can be traded for another
– CPU example: deep pipelines to increase throughput
– GPU example: triangle throughput vs. state change latency
– Don’t concentrate solely on one to the detriment of another

• e.g. adding display latency can increase the frame rate of the
render, but it may make the controls feels sluggish

• Danger: throughput is more important than latency for most
non game applications, so hardware is optimized heavily for
that
– When trading higher latency for improved throughput, there is

usually a lurking catastrophic failure case
• Branch misprediction, cache stall, pipeline flush

Framerate

• Total time from completion of one frame to
completion of the next

• Good general measure of performance
• Often expressed as frames-per-second (60 fps) or

as milliseconds per frame (i.e. 16 ms)

Utilization

• Because systems are asynchronous, and may
have external constraints (e.g. vsync) different
systems may be running for different portions of
frame

• Game where CPU is running flat out for 30ms but
GPU is only running for 10ms has ‘worse’
performance than one where both are running for
30 ms
– You are leaving quality on the table, could get either better

performance or more stuff by balancing better
• Also applies to multi-core

– Want to balance utilization of cores as well as possible

What Should You Measure?

• Best case
– Good for selling things, but not useful for optimisation

• Worst case
– Must use this to ensure application always performs better than

lower-bounds
• Average

– Good indicator, but can be misleading if the performance can
spike

• Overall
– Record per frame rate over many frames, plot the results in a

spreadsheet to look for trouble areas or areas of high visibility
– Helps if gameplay session can be repeatable (journaling)
– Achievable, but requires discipline
– Makes everything hard real-time

Balanced Performance

• Player experience is balanced when it is:
– Smooth

• Throughput handles workload
– Responsive

• Always achieve better than maximum allowable latency
– Consistent

• No peaks or valleys
• A solid 30 fps is more playable than 5-to-60

Optimisation Criteria

• Games have stringent performance constraints
– Display rate
– Sound latency
– Controller response
– Load time
– Network latency

• A laggy, slow, choppy game is not fun
– Online FPS with a 1000 ms ping

• Hardware constraints
– Memory optimisation

Optimisation Pressures

• Content demands outstrip capabilities of code
– Designers and artists always want more than you can

provide
– Puts positive pressure on programmer to improve system

• Hardware remains fixed, quality bar is rising
– Must out-do previous title, competition

• Games have much stronger optimisation pressure
then most software
– More “real-time” systems often have more constrained

scope
– More complex software often has softer constraints, or

ability to solve the problem by running it on better
hardware

Why Optimise?

• Appeal to a wider spectrum of hardware (PC)
– A game that only works on today’s state-of-the-art

hardware may shut out a large portion of your audience
(and sales)

• Facilitates better gameplay experience
– Richer content
– Faster, tighter controls
– Higher game reviews

• Fun & challenging
– Optimising promotes understanding

When not to Optimise

• Optimised code has drawbacks
– Takes more time to develop

• Assembly takes more than 10 times as long as C++, but
isn’t 10x faster

– Compilers can and will beat you some (most?) of the time
– Maintainability / readability suffers
– Portability sacrificed
– Hard to debug
– Easy to be fooled

• Wild goose chases
• Lots of effort for small gain

– Lost opportunity
• Choose your battles carefully!

Common Wisdom: The 90/10 Rule

• 10% of the code takes 90% of the time
• When you find the 10% you can dramatically

increase your speed just by fixing it
• The speed of most of the code doesn't matter, so

you don't need to worry about it
– Can waste a lot of time optimizing things that don't matter

• You need to make sure that you find the right 10%
• This is where good profiling tools and techniques

are essential
• But...

Death by a Thousand Cuts

• Sometimes the 90/10 rule doesn't hold
• Pervasive architectural problems and inefficient

techniques can hide performance issues where you
can't find them
– Language features and hardware quirks are common

culprits here, since they are resistant to many profiling
techniques

– So are over-designed and needlessly abstract systems
• The only way to fight against this is to be aware of

the costs of design choices up front
• You can't generally find and fix these problems

once things are nearing completion

How to Optimise

• Three steps:
– Find performance bottlenecks
– Fix them
– Repeat

How to Optimise

• Good optimisation is a combination of knowledge,
intuition and measurement

• From Michael Abrash's, “Zen of Code
Optimization”:
– Have an overall understanding of the problem to be solved
– Carefully consider algorithms and data structures
– Understand how the compiler translates your code, and

how the computer executes it
– Identify performance bottlenecks
– Eliminate them using the appropriate level of optimisation

Understanding the Problem

• Some questions to ask:
– How long do I have to work on this?
– Has this been solved before? (yes!)

• What are the differences?
– What are the characteristics of the data?

• Are there special cases?
• Where is the coherency?

– What can be computed offline?
– Is there a simpler problem lurking within?
– Can the hardware help me?

• Discuss the problem with your colleagues
• Don’t start coding yet

Algorithms and Data Structures

• The most important aspect of fast code
– A bubble-sort in hand-tweaked assembly is still slow
– Have a toolkit of good general purpose algorithms

developed by smart people
• Quicksort, A*, hashing, etc.

• “Big O” analysis is useful
– In practice, we are less formal about it
– Remember that ‘n’ and ‘c’ matter in real code!
– We care more about the particularities of compilers and

hardware

Finding Bottlenecks

• Intuition (guessing)
– Helps if you are familiar with the algorithm/code
– Don’t trust it alone though!

• Can be misleading, or just plain wrong

• Profiling
– Measure performance to find hot spots
– Many tools available:

• Algorithm analysis
• Counters
• Timers
• Profiler programs

– Profiling exhibits some quantum uncertainty. Can’t always
observe without affecting performance.

Counters and Metrics

• Various counters and metrics should be built into
the game:
– Frame rate counter
– Rendering statistics

• Triangle count, textures used, etc.
– Memory used per pool
– Network ping time
– Collision tests per frame
– Anything else that is interesting

Isolation Profiling

• Isolate components in a running game to
determine their contribution to the frame rate:
– Disable parts of the renderer

• World
• Characters
• Special effects

– Turn off sound
– Turn off collision

• May be misleading if components interact
• Being able to do this easily is an example of good

architecture paying off

Instrumented Profiling

• Instrumentation profiler
– Places code at the beginning and end of every function to

record timings
– Gives accurate tallies of function frequency, total function

time, etc.
– Records call graph
– Intrusive since code is changed

• Can affect accuracy of timings

Sampled Profiling

• Sampling profiler
– At regular intervals (e.g. 1 ms), the current program

counter is recorded
– Later, the samples can be tallied and cross-referenced

with the source code
– Fast, non-obtrusive
– Works on non-instrumented code

• Downsides
– No call graph available
– Less accurate: events can be missed
– Operating system, video drivers are not visible

• One Weird Trick: The single sample profiler

System Trace

• Specialized tool for catching certain types of
things that other forms of profiling can’t

• Capture various kinds of system events
– System library calls
– Context switches or other thread events
– OpenGL calls

• Generate some visualization of the trace
– Thread map
– Replay graphics driver calls to generate detailed profiling

info

Compilers

• Speed is lost in the translation of C/C++ to machine code
– Compilers are sophisticated but dumb
– Narrow view of program at any given time
– No concept of “the problem”

• Don’t waste time trying to beat the compiler on its strengths
– Compiler will optimize how you are doing something, you need

to optimize WHAT you are doing
• Understand the optimization options of the compiler
• Be aware of the costs of language features

– Don't get paranoid though, a virtual function call per vertex in
your mesh would be bad, a virtual function call per object even
in a 1000 object world is nothing.

Hardware

• Modern computers are characterised by:
– Fast CPU
– Deep pipelines
– Slow memory

• Some good algorithms perform poorly in practice
– Poor cache locality
– Unpredictable branching
– High memory usage

• Don’t be afraid to try brute-force solutions
• Can make the code more transparent to CPU and

compilers

Caches

• Cache friendly algorithms are incredibly important
• Try computing information instead of storing it.

Consider this:
– Most modern CPUs have L2 cache miss latencies in the range of

100-300 cycles.
– If you can compute the value in 50 cycles that would have been

read from main memory, you've gained 2-6X performance
– There are many opportunities to do this

• E.g. store a transform as a translation & quaternion (7 floats)
instead of a matrix (16 floats). Generate the full matrix on
demand.

• Favour small data
• Favour coherent memory access patterns

– Avoid cache pollution

Optimisation Mantra

• Constantly challenge assumptions
– Profile, profile, profile!

• Be creative and a little bit crazy
– Optimisation is very non-linear
– It takes a big bag-of-tricks to be effective
– Practice!

• Know how deep to go
– Hand-tweaked assembly can beat the compiler by a factor

of 100 in some cases
– This takes a clear understanding of all factors to succeed
– Spending days only to have the compiler beat you is no

fun

Techniques

34

Multithreading

• All hardware we care about is multithreaded
– No one is even shipping single core phones any more

• Multithreading is probably the most important
optimization technique right now
– If you properly multithread a game, and you have 4

cores, you could quadruple the performance
• A couple of different approaches

– Heavyweight threads
– Job based
– Local optimization (OpenMP, OpenCL)

• Lots of new bugs though
– Deadlocks, race conditions, memory stompage, etc
– Need a strong safety and debug harness

Pre-computation

• Do the tough calculations offline
– Static lighting (light maps, ambient occlusion maps,

spherical harmonics)
– Potentially visible set (PVS) calculation

• This is the classic speed/memory trade-off

Caching

“All programming is an exercise in caching”
-Terje Mathisen

• Take advantage of coherency by storing frequently
used results for quick retrieval

• This technique pops up everywhere
• CPU caches
• HTTP caching in web browsers

• Radical example: one element inventory cache

Lazy Evaluation

• Defer expensive calculation until result is required
– If you are lucky, the result isn’t needed at all

• Examples
– Store dirty flags
– Copy-on-write

• Instances of a process share the same physical memory
until one modifies a given page

Data Organization

• Cache friendly data structures
– Small == fast
– Fit into cache line width
– Walk linearly

• Array of structures vs structure of arrays

– Better cache utilization if only touching certain fields
– SoA is better for SIMD

• Separating hot and cold fields

struct {
float x. y, z;
float dx, dy, dz;
float age;

} particles [10];

struct {
float x[10], y[10], z[10];
float dx[10], dy[10], dz[10]
float age[10];

} particles;

Early Out

• Perform a simple test to avoid a costly operation

if (OnScreen(object.BoundingSphere()))
{
 object.Draw();
}

• Make sure the extra test saves time!
– If the early out test fails most of the time, then it’s just

overhead

Approximation

• Trade accuracy for speed
– Simulate gravity, but not collisions, for particles
– Render at a lower resolution and scale up
– Use Taylor Series or other mathematical approximations

• Be aware of error bounds
– Look-up tables

• Restrict the range of inputs
– Often opens the way for pre-computation

• Interpolate
– Calculate properties in vertex shader and interpolate,

rather than calculating in pixel shader
– Store animation keyframes and linearly interpolate, rather

than calculating an animation curve at each point

Divide and Conquer

• Break a problem into smaller sub-problems and
solve each independently
– Binary search
– Quicksort
– BSP trees or other spatial hierarchy

• Particularly effective if computation of the pieces
can be parallelized

Time-boxing

• Amortize expensive operations over multiple
frames
– Partially processed job queues
– Work to fixed time budget

• Doesn’t necessarily improve average performance,
but can improves worst case

Strength Reduction

• Replace costly operations with equivalent cheap
operations

a = a / 16; // divide (≈40 cycles)
a = a >> 4; // shift (≈1 cycle)

• Compilers are very good at this
– All modern compilers will perform instruction level strength

reduction
– When using assembly, you have to do it yourself

SIMD

• Operate on multiple (usually floating point) values
in the same operation

• Useful for many graphics and audio-related
operations
– Vector and matrix operations
– Particle systems
– Skinning
– SFX

Assembly

• The last word in (micro-)optimisation
– Unless you know how to build your own chips

• Use instructions the compiler doesn’t, or things that
can’t be expressed in C++
– Conditional writes, bit rotates, cache prefetches, etc.
– Different register preservation semantics
– Jump tables

• Hardly ever used in practice any more

Other Low-level Techniques

• Inlining
• Pipelining
• Loop unrolling
• Coiled loops
• Code generation

GPU acceleration

• Operations that are SIMD friendly can often be
moved to the GPU on modern hardware
– GPU’s are significantly faster at this sort of thing

• Lots of applications
– Image processing
– Portions of physics
– Particle system updating
– Nvidia DLSS

• Compute shaders

Summary

• Practice makes perfect
– Understand the fundamental performance characteristics

of the systems you are implementing
– Develop a repertoire of performance friendly techniques
– Profile relentlessly
– Become familiar with your compiler and hardware

• Speculation can be dangerous
• Choose efficient, transparent algorithms

– But remember that brute force can also work well
• Know when to pull out all the stops
• Games have no bounds when it comes to desired

performance

Quotes

Rules of Optimisation
 Rule 1: Don’t do it.
 Rule 2 (experts only): Don’t do it yet.
 - M.A Jackson

“…premature optimisation is the root of all evil.”
 - Donald Knuth

