
1

C++ Pitfalls

C++ Pitfalls

• Modern C++’s biggest problem is Old C++
– There are a lot of sharp edges from C and C++98 and earlier that

are still present in the language
• If you use the right subset, C++ is a pretty safe / easy to

use language
– Unfortunately, no way to force use of that subset (if people could

agree on it, which they don’t).
• Maybe you’ve only dealt with modern C++

– If so good for you, you’ll already be doing (many of) these things
– May have problems at boundaries with libraries with a less

enlightened view or older sample code
• Here are some simple rules for sticking to a clean modern

subset of C++ and avoiding some big sharp edges

No Pointers

• Prefer value types and pass by value if possible, pass by
reference if you absolutely need to
– “SomeClass foo;” vs. “SomeClass* foo = new SomeClass”
– “void func(SomeClass& thing)” vs. “void func(SomeClass* thing)

• Never use raw pointers (SomeClass*)
– Always use unique_ptr or shared_ptr to wrap things that must be

heap allocated

• Also implies no C-style arrays or strings
– Use std::vector and std::string

• Lots of game studios eschew STL due to some issue with allocation
but those issues don’t affect you

Use RAII

• Resource Acquisition Is Initialization
– All resources should be acquired by constructing an object on the

stack, and the destructors should release the resource

• Makes code both cleaner and exception safe

Use (Some) C++ Casts

• static_cast<SomeClass*>
– Not “(SomeClass*)notSomeClass”

• dynamic_cast is cool too

• Mildly avoid const_cast, and really avoid reinterpret_cast
unless you are 100% sure you need them

Avoid Multiple Inheritance

• Complicated and poor-performing relative to how much
value it gives
– Lots of weird gotcha’s you need to understand (i.e. virtual base

classes)
• There are times it is the only reasonable solution to a

problem
– You probably aren’t going to hit any of those times

Avoid Exceptions

• Exceptions are a good thing in general
– Used to have some problems, particularly in games
– Still do have a few problems

• A large, well designed C++ app probably SHOULD use
exception

• However getting correct error handling and recovery
behaviour is hard enough that it’s not worth bothering with
for your projects

• Just assert() and fail immediately on errors.

Some Caveats

• Not all of this applies in general
– No Pointers, Use RAII, Use C++ Casts probably do
– No MI and No Exceptions are more “in my opinion” or “for this

project”

• Other organizations you might work for in the future may
have a different set
– “The good thing about standards is that there are so many to

choose from.” ― Andrew S. Tanenbaum

• Games tend to be pretty mired in Old C++
– You might need to learn how to deal with some of the old crud

eventually
– No reason it has to be today though

