Networking




* Networking is a crucial feature of many modern
games

* Used (until early 2000s) to be mainly PC
* Halo: only over LAN

* Halo 2 brought internet play to the consoles

* Core feature of all consoles for two generations now




Challenges

* Has a huge impact on a game architecture
* Complicates many aspects of the design
* Very hard to retrofit after the fact

* Massively multiplayer games have many
technical and social issues

* Can have huge impact on company




Protocols

* TCP: Transmission Control Protocol
* connection-oriented, byte stream service
* guaranteed packet delivery
* packets are received in-order
* duplicate packets are discarded




Protocols

* Most networking we care about is over IP

* There are a few environments (portables, phones)
where you may use something else (e.g. LAN,
Bluetooth)

* Games will generally have a fairly sophisticated
layer on top of the base transmission protocol




TCP

* Pros
* header compression
* automatic segmenting
* automatic congestion control
* works with firewalls
* reliable




UDP

* Pros
* Lower latency
* No ACK send for packet receipt
* Cons
* No compensation for dropped/missed packets
* Generally need to write it yourself
* Need to handle fragmenting yourself




Protocols

* UDP is generally used in games for bulk of communication
* TCP may be used for session management

* Initial connection, matchmaking, meta-commands, etc.

* Anywhere reliability is important, but speed isn’t
* Slow response to dropped packets rules out TCP
* Higher speed of UDP is nice too
* UDP requires a lot of extra work though

* Ironically, you generally end up reimplementing a lot of TCP
* Must be able to handle out of order and dropped packets




Architectures

* Several different approaches to take to the topology
of the network

* Client-server
* Distributed
* Peer-to-peer
* Hybrid




Client-Server Architecture

* One machine responsible for the game state
* Clients send input, receive game state updates

* Game state synchronisation guaranteed
* Because it’s frustrating when things go out-of-sync
* Makes cheating a lot trickier

* Generally needs a good prediction system
* Server can be either dedicated or local to a client

* Workload concentrated
* Good when server is dedicated
* Bad when server is local
* Network traffic concentrated
* May need fat pipe for server machine



Distributed Architecture

* Variation of dedicated client-server
* Multiple servers maintain game state
* No single server needs to know entire state

* Clients are handed off to servers as they move
through the game

* Needed for massively multi-player games
* Bandwidth / Computing needs are intense
* Need to load balance

* Complex to develop, maintain

* Some client-server games without dedicated
servers may be able to migrate who is the server



* Each player sends packets to all other machines
* No involvement of central server

* Traffic is uniform

* Load on players is uniform

* Less need for prediction




* Like regular P2P but all simulation/Al is deterministic
* Need only send controller input
* Cheating options greatly reduced

* Often used in sports games

* Writing a deterministic game is demanding




Hybrid models

* Parts of the game follow P2P
* Physics simulation
e Al
* Other parts use client-server
* Missions/quests
* Player inventory
* Doesn't quite address the cheating problem, but




Game Protocols

* What should be in your game protocol?
* Depends on the game (duh)
* Client->server and server->client can be very different
* Client sends single, relatively small input stream
* Server sends updates for “all” entities

* Need a robust protocol

* Sequenced, so that dropped packets can be detected and
resent

* Able to process packets out of order

* So that dropped packets don't slow things down to
much

* Packets need to be small enough to pass through all
router fragmenting (usually < 1500 bytes)

* Compression (delta or just bit shaving)



What to Send

* Raw inputs with lockstep
* Needs determinism
* Very simple to implement (apart from determinism)
* Spreads load / authority across clients

* Logical inputs / updates

* Fixed set of operations (move to, fire weapon, take
damage)

* Can handle out of order / prediction easier
* Limits extensibility (mods, engine reuse, etc.)




Infrastructure

* Most online games require some infrastructure

* Peer-to-peer games need matchmaking services
* Often provided by platform (PSN, Xbox Live, Game Center)

* Client-server games need:
* Master servers (for matchmaking, if users run game
servers)

* Dedicated servers (for pay-to-play)
* Authentication

h




Performance

* Bandwidth (upper bounds)
°* LAN: 100/1000/10000 Mb/s
* Cable/DSL: download 3-1000 Mb/s, upload 1-100 Mb/s
* Mobile: 3-1000 Mb/s down, 1-100 Mb/s up

* Latency (lower bounds)
* Wired LAN: 1 ms
* Wireless LAN: 5 ms
* Cell data: 50ms




Latency

* Latency is the primary problem for games
* "Ping is king”
* Nalive approach to game networking:
* Clients send inputs for next update to server
* Server waits for inputs from all clients
* Update world
* Sends new positions to all clients




Coping with Latency

* Minimal “good” networking architecture
* Clients send updates at regular intervals
* Time stamped
* Not sequence dependent

* Server sends position updates to clients at
regular intervals

* No one waits




Simple Prediction

* The client immediately moves based on local input

* Updates from the server get projected back to the
past when received

* Compare player state received from server to the
historical (predicted) one cached locally

* If the same, nothing to do, prediction was correct
* Otherwise, re-predict with cached input sequence
* Removes the most annoying form of lag

% p‘, 5 A % A 1
1 | - 1 A
L EEEA R inias B




More Advanced Prediction

* Run all entity logic on client
* But updates from the server can clobber it

* Still get some teleporting from inability to guess input from
human controlled entities

* Still can get noticeable lag on instant hit weapons
* Problem: who gets the kill?

* The Source engine deals with this by projecting client
action into the past on the server




Cheating

Never trust the client.

Never put anything on the client.

The client is in the hands of the enemy.
Never ever ever forget this.

- Raph Koster




Cheating

* Cheating can take the fun out of an online game
* Takes many forms:

Bots: programs that masquerade as players
* Sometime an intentional part of the game (Quake 3, UT)

* In MMORPGs people often have “bots” that do boring and
repetitive, but profitable tasks unattended

Aiming proxies: programs to enhance the abilities of a
player

Client-side mods: show all other players (visible or not),
remove walls

* |If client is authoritative on anything, can be really damaging
Modified servers: give advantage to certain players

* Unauthorised modification of world database (e.g. item
duping — also spoils single player)



Combating Cheating

* Standard security techniques often don't work

* We aren't dealing with someone trying to snoop
or attack a hidden resource

* Encryption is only vaguely useful

* Security through obscurity is often a necessary
evil

* Hard to avoid keeping dangerous info on the client




Combating Cheating

* Central authentication

Needs to be built into pay services anyway
(MMORPGs)

We used to use CD keys

Now most multiplayer is via a service like Steam
or XBL so we have authentication that way

* Deal aggressively with offenders

This goes back to having a good infrastructure

Need tools for server ops (player-run servers or
central)

Need to be able to kick, ban or relegate to “pool
of shame”



Summary

* Design networking from the beginning
* Need a robust protocol

* Need to fight against lag

* Need to fight against cheating




