
Networking

1

• Networking is a crucial feature of many modern
games
• Used (until early 2000s) to be mainly PC
• Halo: only over LAN
• Halo 2 brought internet play to the consoles
• Core feature of all consoles for two generations now

• Even if no network gameplay, often have social
features:
• 'Asynchronous multiplayer'
• Online scoreboards
• Ghosts, network challenges, cross-game rescue missions or

advice (Shadow Of War, Dark Souls)

Networking - past, present and future

Challenges

• Has a huge impact on a game architecture
• Complicates many aspects of the design
• Very hard to retrofit after the fact
• Massively multiplayer games have many

technical and social issues

• Can have huge impact on company
• May need to run servers
• It’s not a feature that can be delegated to a

couple of coders in the basement

Protocols

• TCP: Transmission Control Protocol
• connection-oriented, byte stream service
• guaranteed packet delivery
• packets are received in-order
• duplicate packets are discarded

• UDP: Universal Datagram Protocol
• connectionless
• unreliable delivery
• out-of-order, duplicate packets possible

Protocols

• Most networking we care about is over IP
• There are a few environments (portables, phones)

where you may use something else (e.g. LAN,
Bluetooth)

• Games will generally have a fairly sophisticated
layer on top of the base transmission protocol

TCP

• Pros
• header compression
• automatic segmenting
• automatic congestion control
• works with firewalls
• reliable

• Cons
• Deals with dropped/delayed packets in a non-

timely manner
• Connection will “block” till next portion of data

stream is received

UDP

• Pros
• Lower latency
• No ACK send for packet receipt

• Cons
• No compensation for dropped/missed packets
• Generally need to write it yourself
• Need to handle fragmenting yourself
• May be blocked by network firewalls
• In practice, can behave faultlessly on LAN,

requiring you to test it over the internet or with
debug code to simulate problems

Protocols

• UDP is generally used in games for bulk of communication
• TCP may be used for session management

• Initial connection, matchmaking, meta-commands, etc.
• Anywhere reliability is important, but speed isn’t

• Slow response to dropped packets rules out TCP
• Higher speed of UDP is nice too
• UDP requires a lot of extra work though

• Ironically, you generally end up reimplementing a lot of TCP
• Must be able to handle out of order and dropped packets

• Simple approach: send all packets that have not been
ACKed avery time

• May need to compensate in game logic in some way

Architectures

• Several different approaches to take to the topology
of the network
• Client-server
• Distributed
• Peer-to-peer
• Hybrid

Client-Server Architecture

• One machine responsible for the game state
• Clients send input, receive game state updates
• Game state synchronisation guaranteed

• Because it’s frustrating when things go out-of-sync
• Makes cheating a lot trickier

• Generally needs a good prediction system
• Server can be either dedicated or local to a client
• Workload concentrated

• Good when server is dedicated
• Bad when server is local

• Network traffic concentrated
• May need fat pipe for server machine

Distributed Architecture

• Variation of dedicated client-server
• Multiple servers maintain game state
• No single server needs to know entire state
• Clients are handed off to servers as they move

through the game
• Needed for massively multi-player games

• Bandwidth / Computing needs are intense
• Need to load balance

• Complex to develop, maintain
• Some client-server games without dedicated

servers may be able to migrate who is the server

• Each player sends packets to all other machines
• No involvement of central server
• Traffic is uniform
• Load on players is uniform
• Less need for prediction
• Does not scale to large number of players

• Client-server = 2n packets per update
• Peer-to-peer = n2 packets per update, O(n)

probability that one of the peers is behind a strict
NAT

• Vastly increases cheating potential

Peer-to-Peer Architecture

• Like regular P2P but all simulation/AI is deterministic
• Need only send controller input
• Cheating options greatly reduced
• Often used in sports games
• Writing a deterministic game is demanding

• Even harder if cross-platform
• Hard to do when latency is high/variable and action

is fast
• Often need to wait for packets

Deterministic Peer-to-Peer

Hybrid models

• Parts of the game follow P2P
• Physics simulation
• AI

• Other parts use client-server
• Missions/quests
• Player inventory

• Doesn’t quite address the cheating problem, but
makes coding easier for less performance-critical
systems

• Still requires some host migration
• Avoids much of the need to implement prediction

Game Protocols

• What should be in your game protocol?
• Depends on the game (duh)
• Client->server and server->client can be very different

• Client sends single, relatively small input stream
• Server sends updates for “all” entities

• Need a robust protocol
• Sequenced, so that dropped packets can be detected and

resent
• Able to process packets out of order

• So that dropped packets don't slow things down to
much

• Packets need to be small enough to pass through all
router fragmenting (usually < 1500 bytes)
• Compression (delta or just bit shaving)

What to Send

• Raw inputs with lockstep
• Needs determinism
• Very simple to implement (apart from determinism)
• Spreads load / authority across clients

• Logical inputs / updates
• Fixed set of operations (move to, fire weapon, take

damage)
• Can handle out of order / prediction easier
• Limits extensibility (mods, engine reuse, etc.)

• General object replication
• Replicate object variables
• General-purpose RPC
• Complicated to implement, but very powerful

Infrastructure

• Most online games require some infrastructure
• Peer-to-peer games need matchmaking services

• Often provided by platform (PSN, Xbox Live, Game Center)
• Client-server games need:

• Master servers (for matchmaking, if users run game
servers)

• Dedicated servers (for pay-to-play)
• Authentication

• Need to make sure you have resources for this
• Big pipes
• Big servers
• Reliability
• A company that is in business

Performance

• Bandwidth (upper bounds)
• LAN: 100/1000/10000 Mb/s
• Cable/DSL: download 3-1000 Mb/s, upload 1-100 Mb/s
• Mobile: 3-1000 Mb/s down, 1-100 Mb/s up

• Latency (lower bounds)
• Wired LAN: 1 ms
• Wireless LAN: 5 ms
• Cell data: 50ms
• Internet: 0 to 200+ ms

• Depending on geographic location
• Crummy connections make lower bounds for

bandwidth and upper bounds for latency much
worse

Latency

• Latency is the primary problem for games
• “Ping is king”

• Naive approach to game networking:
• Clients send inputs for next update to server
• Server waits for inputs from all clients
• Update world
• Sends new positions to all clients
• Repeat

• Problem
• Perceptual lag == ping of slowest client

Coping with Latency

• Minimal “good” networking architecture
• Clients send updates at regular intervals

• Time stamped
• Not sequence dependent

• Server sends position updates to clients at
regular intervals

• No one waits
• Now perceptual lag is “only” your ping time
• Rendering decoupled from simulation

Simple Prediction

• The client immediately moves based on local input
• Updates from the server get projected back to the

past when received
• Compare player state received from server to the

historical (predicted) one cached locally
• If the same, nothing to do, prediction was correct
• Otherwise, re-predict with cached input sequence

• Removes the most annoying form of lag
(movement of your character)
• Other entities still lag

More Advanced Prediction

• Run all entity logic on client
• But updates from the server can clobber it
• Still get some teleporting from inability to guess input from

human controlled entities
• Still can get noticeable lag on instant hit weapons

• Problem: who gets the kill?
• The Source engine deals with this by projecting client

action into the past on the server
• Good articles about it online

Never trust the client.
Never put anything on the client.
The client is in the hands of the enemy.
Never ever ever forget this.

- Raph Koster

Cheating

In every aggregation of people online, there is an
irreducible proportion of jerks

- John Hanke's Law (cited by Mike Sellers)

Cheating

• Cheating can take the fun out of an online game
• Takes many forms:

• Bots: programs that masquerade as players
• Sometime an intentional part of the game (Quake 3, UT)
• In MMORPGs people often have “bots” that do boring and

repetitive, but profitable tasks unattended
• Aiming proxies: programs to enhance the abilities of a

player
• Client-side mods: show all other players (visible or not),

remove walls
• If client is authoritative on anything, can be really damaging

• Modified servers: give advantage to certain players
• Unauthorised modification of world database (e.g. item

duping – also spoils single player)

Combating Cheating

• Standard security techniques often don't work
• We aren't dealing with someone trying to snoop

or attack a hidden resource
• Encryption is only vaguely useful
• Security through obscurity is often a necessary

evil
• Hard to avoid keeping dangerous info on the client

• Make sure client isn't authoritative

Combating Cheating

• Central authentication
• Needs to be built into pay services anyway

(MMORPGs)
• We used to use CD keys
• Now most multiplayer is via a service like Steam

or XBL so we have authentication that way
• Deal aggressively with offenders

• This goes back to having a good infrastructure
• Need tools for server ops (player-run servers or

central)
• Need to be able to kick, ban or relegate to “pool

of shame”

Summary

• Design networking from the beginning
• Need a robust protocol
• Need to fight against lag
• Need to fight against cheating

