How C++ Works

Overview

* Constructors and destructors
* Virtual functions

* Single inheritance

* Multiple inheritance

R

* Templates

Motivation

* C++is a complicated language

* Some central features have bizarre implementation
quirks

* Aclear understanding of how a compiler implements
language constructs is important when designing large
C++ systems

* We learned a lot about these topics in our line of work

Assumptions

* Familiarity with the high-level behaviour of C++ constructs
* Virtual functions
* Inheritance
°* RTTI
* Exceptions
* Templates

Constructors

* Constructors are called when an object:
* ... enters scope
* ... Is created with operator new
* What about global variables?
* Constructed before main() by C++ startup code
* Can’t assume the order of creation

Object Construction

* When an object is instantiated:

* operator new is called by the compiler to allocate
memory for the class

* oritis allocated on the stack

* For each class in the inheritance hierarchy, starting with
the base class:

* the vtable pointers are initialized
* the initialization list is processed
* In the order objects are declared!

* default constructor calls are added as needed by
compiler

* the constructor for that class is called

Object construction pitfalls

* Pay attention to member order
Calling virtual functions in constructors is dangerous:

class A

{
A()

{

foo(); // calls A::foo(), even if object is a B

}

virtual foo();

s

class B : public A

{
B();
virtual foo();

s

Destructors

* Destructors are called when an object:
* ... leaves scope
* ... Is destroyed with operator delete

* Global objects are destroyed after main()
* Same pitfalls as global construction

* Operator delete[] informs the compiler to call the
destructor for each object in an array

* The compiler has no way of knowing if a pointer refers
to an array of objects, or just a single object. You have
to tell it. Memory leaks otherwise.

Object destruction

* Similar to constructors but backwards
* Only works in hierarchy if the destructor is virtual
* Otherwise:

class A

class B : public A

{
~B() { ImportantStuff(); }

Y

A* foo = new B;
delete foo; // B’s destructor isn’t called!

Virtual functions

* What is a vtable?

* Array of function pointers representing a class's virtual
members

* Stored in the application’s static data
* Used for virtual function dispatch

* Virtual functions must be “looked up” in vtable before
calling

Single inheritance

* Implemented by concatenating layout of base classes
together

* except for the base class vtable pointers

* only one vtable pointer regardless of inheritance depth
* Cost of single inheritance:

* one global vtable per class
* one vtable poin Dlect. ciiie

i
b2

A

Single inheritance example

class A

{

virtual fool () ;

virtual foo2 () ;

int datal;
b

A's layout A’s vtable

A::foo1()
A::foo2()

class B : public A

{

'

virtual fool () ;
virtual foo3();
int data?;

B’s vtable

B::foo1()

A::foo2()
B::foo3()

Multiple inheritance

* Implemented by concatenating layout of base classes together

Including vtable pointers

If two functions in base classes share signatures, compiler can'’t
always disambiguate

Pointers to base classes of the same object are not always the
same

* Cost of multiple inheritance:

one vtable per class
one vtable pointer per parent class per object
one virtual base class pointer per use of virtual base class
a virtual base class adds an extra level of indirection
* affects virtual and non-virtual calls
normal virtual function calls are the same as single inheritance

Regular multiple inheritance

classA{... };
class B : publicA{... };
class C : publicA{ ... };

class D : public B, publicC{ ... };
D’s footprint:

Vtable*

A Data Members

B Data Members

B .
A Data Members

C Data Members

D Data Members

Virtual multiple inheritance

classA{... };
class B : virtual publicA{ ... };
class C : virtual publicA{ ... }; D’s footprint:

B Data Members

class D : public B, publicC { ... };

vtable*

virtual base class*

C Data Members
vtable*

virtual base class*

D Data Members

A Data Members
vtable*

(Note how I've used a different possible class layout here.
Class layouts are compiler-dependent, not prescribed by the language itself.)

Run Time Type Information (RTTI)

* RTTI relates to two C++ operators:
* dynamic_cast<>

* typeid()
* How does RTTI work?
* Compiler inserts an extra function into a class’s vtable
* Memory hit is per class, not per instance
* Only pay the speed hit when you use RTTI operators

* Maximum single inheritance cost is the same as a
virtual function times depth of inheritance hierarchy

for that class
* Multiple inheritance is slower

RTTI implementation

User Code: Compiler generated casting function:

class A void* cast (void* obj, type dest)
{ {

virtual ~A(); return mytype == dest ? obj : 0;
I

class B : public A void* siCast (void* obj, type dest)
{ {
} s 1if (mytype == dest)
return obj;
A* foo SomeFoo () ; else
B* bar dynamic cast<B*>(foo) ; return base->cast (obj, dest);

dynamic_cast<> in multiple inheritance

Operator overloading

* Most operators in C++ can be overloaded
°* Can'toverload: . ?: : .* sizeof typeid
°* Shouldn’t overload: , && ||
* Principle of Least Astonishment

* Operators have function signatures of form “operator
<symbol>", example :

* Foo& operator + (Foo& a, Foo& b);

* If you ever implement your own operators (l.e. write a
math library) need to understand C++11 move semantics
to avoid redundant copies

Templates

* Macros on steroids

* Evaluated in a similar fashion to macros, but are type-
safe.

* Can be templatized on types or values
* Code is generated at each template instantiation
* Everything must be defined inline
* Templatized class is parsed by compiler and held

I i iy o L Agd AR T
ERVYAYVAaT~Ya - s al “Q01 L alalilfa i
VVI| _f_.-_»‘ BRIt CA ',‘ LI LT U 1010] 5 { ﬁn

These two examples will generate identical code

template <class T> class foo class foolnt

{ {
T Func (void) int Func (void)
{ return bar; } { return bar; }
T bar;

Y b

int bar;

foo<int> 1i;
foo<char> c; class fooChar

{
char Func (void)
{ return bar; }
char bar;

Templated Code Bloat

* Not one, but two ways to bloat code!

* Because templates must be defined inline, code may
be inlined unintentionally

* Each instantiation of new templatized type causes the
creation of a large amount of code

* Combating code bloat

* Separate non-type-dependent functions into non-
templatized functions or base class

* Use templates as type-safe wrappers for unsafe
classes

* When templates are not inlined, duplicate symbols are
generated which the linker must strip out

Templates (cont'd)

* Templates can interact fine with derivation hierarchy and
virtual functions

* But the specializations are not naturally related in any
way

* Templates cannot be exported from libraries because no
code exists

* Instantiated or fully-specialized template classes can

Exceptions

* Provide a way to handle error conditions without constant
checking of return values

* Problems to be solved by exception handling
Implementation:

* Finding correct exception handler
* Transferring control to exception handler
* Destroying objects on the stack

Finding the correct exception handler

* Table of handlers is kept
* one per try/catch block

* also stores reference to the next (parent) try/catch
frame

* Global pointer to current try/catch frame is stored

Passing control to exception handler

* At the beginning of each try/catch block the current stack
state is stored (setjmp)

* If an exception occurs the runtime searches the try/catch

frame for an appropriate handler, resets the stack frame
and passes control (longjmp)

Destroying objects on the stack (x86)

* For each function an unwinding table of all stack allocated
objects is kept

* Current initialization state is kept for each object

* When an exception occurs, current unwind table and
all above it but below the handler’s frame have all
valid objects destroyed

* The table is created even for functions with no try/catch
or throw statements

* Extra work per stack allocation/deallocation
* Extra work at start and end of a function

Exceptions Example (X86)
With Exceptions

2Test@@YAXXZ PROC NEAR

C++ Code

void Test(void)
{

Foo a;
Foo b;

}

No Exceptions

?Test@@YAXXZ PROC NEAR
push ebp

mov ebp, esp

sub esp, 72

push ebx

push esi

push edi

lea ecx, DIWORD PTR _f$[ebp]
call ??0Foo@@QAE@XZ

lea ecx, DIWORD PTR _g$[ebp]
call ??70Foo@@QAE@XZ

lea ecx, DWORD PTR _g$[ebp]
call ??1Foo@@QAE@XZ

lea ecx, DIWORD PTR _f$[ebp]
call ??1Foo@@QAE@XZ

pop edi

pop esi

pop ebx

mov esp, ebp

pop ebp

ret 0

?Test@@YAXXZ ENDP

push
mov
push
push
mov
push
mov
sub
push
push
push
lea
call
mov
lea
call
lea
call
mov
lea
call
mov
mov
pop
pop
pop
mov
pop
ret
_TEXT

iext$x
__unwindfunclet$?Test@@ YAXXZ$O0:

lea
call
ret

ebp

ebp, esp

-1

__ehhandler$?Test@@YAXXZ
eax, DWORD PTR fs:__except_list
eax

DWORD PTR fs:__except_list, esp
esp, 72

ebx

esi

edi

ecx, DWORD PTR _f$[ebp]
??0Foo@@QAE@XZ

DWORD PTR __$EHRec$[ebp+8], 0
ecx, DWORD PTR _g$[ebp]
??0Foo@@QAE@XZ

ecx, DIWORD PTR _g$[ebp]
??1Foo@@QAE@XZ

DWORD PTR __ $EHRec$[ebp+8], -1
ecx, DIWORD PTR _f$[ebp]
??1Foo@@QAE@XZ

ecx, DWORD PTR __$EHRec$[ebp]
DWORD PTR fs:__except_list, ecx
edi

esi

ebx

esp, ebp

ebp

0

ENDS

COMDAT text$x

SEGMENT

ecx, DIWORD PTR _f$[ebp]
221F00@@QAE@XZ
0

__ehhandler$?Test@@YAXXZ:

mov

eax, OFFSET FLAT:__ehfuncinfo$?

Test@@YAXXZ

imp
text$x

___CxxFrameHandler
ENDS

?Test@@YAXXZ ENDP

Exceptions (x86)

* This behaviour means that exception handling costs even
when you don't actually use it

* Most compilers have a flag to turn on/off stack
unwinding for exception handling

* This makes exception handling basically useless
though

Destroying Objects on the Stack (x64)

* For each function a static unwinding table of stack allocated
objects is generated by the compiler

* Current initialization state for each object is calculated
based on the program counter

* When an exception occurs current unwind table and all
above it but below the handler’s frame have all valid
objects destroyed

* The table is created even for functions with no try/catch or
throw statements

* But it's done statically by the compiler with no runtime
overhead
* It does mean that throwing an exception is considerably more
expensive, but they should be rare, and if you don’t use them,
there’s no cost

Points to take with you

* Most of this is covered in “Effective C++” and “More
Effective C++" by Scott Meyers

* All of it is covered in the GCC source code

* Harder to read though (but comments are hilarious)
* Stroustrup and Ellis “Annotated C++ Reference Manual
describes in detail how C++ concepts can be
iImplemented

