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Overview

• Constructors and destructors 
• Virtual functions 
• Single inheritance 
• Multiple inheritance 
• RTTI 
• Templates 
• Exceptions 
• Operator overloading



Motivation

• C++ is a complicated language 
• Some central features have bizarre implementation 

quirks 
• A clear understanding of how a compiler implements 

language constructs is important when designing large 
C++ systems 

• We learned a lot about these topics in our line of work



Assumptions

• Familiarity with the high-level behaviour of C++ constructs 
• Virtual functions 
• Inheritance 
• RTTI 
• Exceptions 
• Templates 
• Etc.



Constructors

• Constructors are called when an object: 
• ... enters scope 
• ... is created with operator new 

• What about global variables? 
• Constructed before main() by C++ startup code 
• Can’t assume the order of creation 
• Be careful with global constructors 

• The system might not be fully “set up” at this time



Object Construction

• When an object is instantiated: 
• operator new is called by the compiler to allocate 

memory for the class 
• or it is allocated on the stack 

• For each class in the inheritance hierarchy, starting with 
the base class: 
• the vtable pointers are initialized 
• the initialization list is processed 

• in the order objects are declared! 
• default constructor calls are added as needed by 

compiler 
• the constructor for that class is called



Object construction pitfalls

• Pay attention to member order 
• Calling virtual functions in constructors is dangerous:

class A 
{ 
    A() 
    { 
        foo(); // calls A::foo(), even if object is a B 
    } 
    virtual foo(); 
}; 

class B : public A 
{ 
    B(); 
    virtual foo(); 
};



Destructors

• Destructors are called when an object: 
• ... leaves scope 
• ... is destroyed with operator delete 

• Global objects are destroyed after main() 
• Same pitfalls as global construction 

• Operator delete[] informs the compiler to call the 
destructor for each object in an array 
• The compiler has no way of knowing if a pointer refers 

to an array of objects, or just a single object. You have 
to tell it. Memory leaks otherwise.



Object destruction

• Similar to constructors but backwards 
• Only works in hierarchy if the destructor is virtual 
• Otherwise:

class A 
{ 
    ~A(); 
}; 

class B : public A 
{ 
   ~B() { ImportantStuff(); } 
}; 

A* foo = new B; 
delete foo;   // B’s destructor isn’t called!



Virtual functions

• What is a vtable? 
• Array of function pointers representing a class's virtual 

members 
• Stored in the application’s static data 
• Used for virtual function dispatch 

• Virtual functions must be “looked up” in vtable before 
calling 
• a few cycles slower than a regular function call 
• can incur a cache miss 
• can incur a branch target mispredict 
• can’t be inlined



Single inheritance

• Implemented by concatenating layout of base classes 
together 
• except for the base class vtable pointers 
• only one vtable pointer regardless of inheritance depth 

• Cost of single inheritance: 
• one global vtable per class 
• one vtable pointer per object 
• one vtable lookup per virtual call



Single inheritance example

class A 
{ 
   virtual foo1(); 
   virtual foo2(); 
   int data1; 
};

A’s vtable 

A::foo1() 

A::foo2()

B’s vtable 

B::foo1() 

A::foo2() 

B::foo3()

A’s layout 

vtable * 

data1

B’s layout 

vtable * 

data1 

data2

class B : public A 
{ 
   virtual foo1(); 
   virtual foo3(); 
   int data2; 
};



Multiple inheritance

• Implemented by concatenating layout of base classes together 
• Including vtable pointers 
• If two functions in base classes share signatures, compiler can’t 

always disambiguate 
• Pointers to base classes of the same object are not always the 

same 
• Cost of multiple inheritance: 

• one vtable per class 
• one vtable pointer per parent class per object 
• one virtual base class pointer per use of virtual base class 
• a virtual base class adds an extra level of indirection 

• affects virtual and non-virtual calls 
• normal virtual function calls are the same as single inheritance



Regular multiple inheritance

class A { … }; 
class B : public A { … }; 
class C : public A { … }; 
class D : public B, public C { … };

A

C

D

B

Vtable* 

A Data Members

B Data Members

C Data Members

D Data Members

Vtable* 

A Data Members

D’s footprint:



Virtual multiple inheritance

class A { … }; 
class B : virtual public A { … }; 
class C : virtual public A { … }; 
class D : public B, public C { … }; B Data Members 

vtable* 

virtual base class*

C Data Members 

vtable* 

virtual base class*

D Data Members

A Data Members 

vtable*

A

C

D

B

D’s footprint:

(Note how I've used a different possible class layout here. 
Class layouts are compiler-dependent, not prescribed by the language itself.)



Run Time Type Information (RTTI)

• RTTI relates to two C++ operators: 
• dynamic_cast<> 
• typeid() 

• How does RTTI work? 
• Compiler inserts an extra function into a class’s vtable 
• Memory hit is per class, not per instance 
• Only pay the speed hit when you use RTTI operators 

• Maximum single inheritance cost is the same as a 
virtual function times depth of inheritance hierarchy 
for that class 

• Multiple inheritance is slower



RTTI implementation

User Code: 

class A 
{ 
   virtual ~A(); 
}; 

class B : public A 
{ 
}; 

A* foo = SomeFoo(); 
B* bar = dynamic_cast<B*>(foo);

Compiler generated casting function: 

void* cast(void* obj, type dest) 
{ 
  return mytype == dest ? obj : 0; 
} 
    
void* siCast(void* obj, type dest) 
{ 
   if (mytype == dest) 
      return obj; 
   else 
      return base->cast(obj, dest); 
}



dynamic_cast<> in multiple inheritance



Operator overloading

• Most operators in C++ can be overloaded 
• Can't overload:   .   ?:    ::    .*   sizeof  typeid 
• Shouldn’t overload:    ,    &&    || 
• Principle of Least Astonishment 

• Operators have function signatures of form “operator 
<symbol>”, example : 
• Foo& operator + (Foo& a, Foo& b); 

• If you ever implement your own operators (I.e. write a 
math library) need to understand C++11 move semantics 
to avoid redundant copies



Templates

• Macros on steroids 
• Evaluated in a similar fashion to macros, but are type-

safe. 
• Can be templatized on types or values 

• Code is generated at each template instantiation 
• Everything must be defined inline 
• Templatized class is parsed by compiler and held 
• When a template class is instantiated, compiler inserts 

actual classes into parse tree to generate code.



These two examples will generate identical code

template <class T> class foo 
{ 
    T Func(void) 
    { return bar; } 
    T bar; 
}; 

foo<int> i; 
foo<char> c;

class fooInt 
{ 
    int Func(void) 
    { return bar; } 
    int bar; 
}; 

class fooChar 
{ 
    char Func(void) 
    { return bar; } 
    char bar; 
}



Templated Code Bloat

• Not one, but two ways to bloat code! 
• Because templates must be defined inline, code may 

be inlined unintentionally 
• Each instantiation of new templatized type causes the 

creation of a large amount of code 
• Combating code bloat 

• Separate non-type-dependent functions into non-
templatized functions or base class 

• Use templates as type-safe wrappers for unsafe 
classes 

• When templates are not inlined, duplicate symbols are 
generated which the linker must strip out



Templates (cont’d)

• Templates can interact fine with derivation hierarchy and 
virtual functions 
• But the specializations are not naturally related in any 

way 
• Templates cannot be exported from libraries because no 

code exists 
• Instantiated or fully-specialized template classes can



Exceptions

• Provide a way to handle error conditions without constant 
checking of return values 

• Problems to be solved by exception handling 
implementation: 
• Finding correct exception handler 
• Transferring control to exception handler 
• Destroying objects on the stack



Finding the correct exception handler

• Table of handlers is kept 
• one per try/catch block 
• also stores reference to the next (parent) try/catch 

frame 
• Global pointer to current try/catch frame is stored



Passing control to exception handler

• At the beginning of each try/catch block the current stack 
state is stored (setjmp) 

• If an exception occurs the runtime searches the try/catch 
frame for an appropriate handler, resets the stack frame 
and passes control (longjmp)



Destroying objects on the stack (x86)

• For each function an unwinding table of all stack allocated 
objects is kept 
• Current initialization state is kept for each object 
• When an exception occurs, current unwind table and 

all above it but below the handler’s frame have all 
valid objects destroyed 

• The table is created even for functions with no try/catch  
or throw statements 
• Extra work per stack allocation/deallocation 
• Extra work at start and end of a function



Exceptions Example (X86)

C++ Code 
void Test(void) 
{ 
Foo a; 
Foo b; 
}

 No Exceptions 
?Test@@YAXXZ PROC NEAR 
push ebp 
mov ebp, esp 
sub esp, 72  
push ebx 
push esi 
push edi 
lea ecx, DWORD PTR _f$[ebp] 
call ??0Foo@@QAE@XZ 
lea ecx, DWORD PTR _g$[ebp] 
call ??0Foo@@QAE@XZ 
lea ecx, DWORD PTR _g$[ebp] 
call ??1Foo@@QAE@XZ 
lea ecx, DWORD PTR _f$[ebp] 
call ??1Foo@@QAE@XZ 
pop edi 
pop esi 
pop ebx 
mov esp, ebp 
pop ebp 
ret 0 
?Test@@YAXXZ ENDP

With Exceptions 
?Test@@YAXXZ PROC NEAR 
push ebp 
mov ebp, esp 
push -1 
push __ehhandler$?Test@@YAXXZ 
mov eax, DWORD PTR fs:__except_list 
push eax 
mov DWORD PTR fs:__except_list, esp 
sub esp, 72  
push ebx 
push esi 
push edi 
lea ecx, DWORD PTR _f$[ebp] 
call ??0Foo@@QAE@XZ 
mov DWORD PTR __$EHRec$[ebp+8], 0 
lea ecx, DWORD PTR _g$[ebp] 
call ??0Foo@@QAE@XZ 
lea ecx, DWORD PTR _g$[ebp] 
call ??1Foo@@QAE@XZ 
mov DWORD PTR __$EHRec$[ebp+8], -1 
lea ecx, DWORD PTR _f$[ebp] 
call ??1Foo@@QAE@XZ 
mov ecx, DWORD PTR __$EHRec$[ebp] 
mov DWORD PTR fs:__except_list, ecx 
pop edi 
pop esi 
pop ebx 
mov esp, ebp 
pop ebp 
ret 0 
_TEXT ENDS 
; COMDAT text$x 
text$x SEGMENT 
__unwindfunclet$?Test@@YAXXZ$0: 
lea ecx, DWORD PTR _f$[ebp] 
call ??1Foo@@QAE@XZ 
ret 0 
__ehhandler$?Test@@YAXXZ: 
mov eax, OFFSET FLAT:__ehfuncinfo$?
Test@@YAXXZ 
jmp ___CxxFrameHandler 
text$x ENDS 
?Test@@YAXXZ ENDP



Exceptions (x86)

• This behaviour means that exception handling costs even 
when you don’t actually use it 
• Most compilers have a flag to turn on/off stack 

unwinding for exception handling 
• This makes exception handling basically useless 

though 
• Exceptions are one of the few C++ constructs that have 

fully deserved their bad reputation 

• But...



Destroying Objects on the Stack (x64)

• For each function a static unwinding table of stack allocated 
objects is generated by the compiler 
• Current initialization state for each object is calculated 

based on the program counter 
• When an exception occurs current unwind table and all 

above it but below the handler’s frame have all valid 
objects destroyed 

• The table is created even for functions with no try/catch  or 
throw statements 
• But it’s done statically by the compiler with no runtime 

overhead 
• It does mean that throwing an exception is considerably more 

expensive, but they should be rare, and if you don’t use them, 
there’s no cost



Points to take with you

• Most of this is covered in “Effective C++” and “More 
Effective C++” by Scott Meyers 

• All of it is covered in the GCC source code 
• Harder to read though (but comments are hilarious) 

• Stroustrup and Ellis “Annotated C++ Reference Manual” 
describes in detail how C++ concepts can be 
implemented


