
How C++ Works

1

Overview

• Constructors and destructors
• Virtual functions
• Single inheritance
• Multiple inheritance
• RTTI
• Templates
• Exceptions
• Operator overloading

Motivation

• C++ is a complicated language
• Some central features have bizarre implementation

quirks
• A clear understanding of how a compiler implements

language constructs is important when designing large
C++ systems

• We learned a lot about these topics in our line of work

Assumptions

• Familiarity with the high-level behaviour of C++ constructs
• Virtual functions
• Inheritance
• RTTI
• Exceptions
• Templates
• Etc.

Constructors

• Constructors are called when an object:
• ... enters scope
• ... is created with operator new

• What about global variables?
• Constructed before main() by C++ startup code
• Can’t assume the order of creation
• Be careful with global constructors

• The system might not be fully “set up” at this time

Object Construction

• When an object is instantiated:
• operator new is called by the compiler to allocate

memory for the class
• or it is allocated on the stack

• For each class in the inheritance hierarchy, starting with
the base class:
• the vtable pointers are initialized
• the initialization list is processed

• in the order objects are declared!
• default constructor calls are added as needed by

compiler
• the constructor for that class is called

Object construction pitfalls

• Pay attention to member order
• Calling virtual functions in constructors is dangerous:

class A
{
 A()
 {
 foo(); // calls A::foo(), even if object is a B
 }
 virtual foo();
};

class B : public A
{
 B();
 virtual foo();
};

Destructors

• Destructors are called when an object:
• ... leaves scope
• ... is destroyed with operator delete

• Global objects are destroyed after main()
• Same pitfalls as global construction

• Operator delete[] informs the compiler to call the
destructor for each object in an array
• The compiler has no way of knowing if a pointer refers

to an array of objects, or just a single object. You have
to tell it. Memory leaks otherwise.

Object destruction

• Similar to constructors but backwards
• Only works in hierarchy if the destructor is virtual
• Otherwise:

class A
{
 ~A();
};

class B : public A
{
 ~B() { ImportantStuff(); }
};

A* foo = new B;
delete foo; // B’s destructor isn’t called!

Virtual functions

• What is a vtable?
• Array of function pointers representing a class's virtual

members
• Stored in the application’s static data
• Used for virtual function dispatch

• Virtual functions must be “looked up” in vtable before
calling
• a few cycles slower than a regular function call
• can incur a cache miss
• can incur a branch target mispredict
• can’t be inlined

Single inheritance

• Implemented by concatenating layout of base classes
together
• except for the base class vtable pointers
• only one vtable pointer regardless of inheritance depth

• Cost of single inheritance:
• one global vtable per class
• one vtable pointer per object
• one vtable lookup per virtual call

Single inheritance example

class A
{
 virtual foo1();
 virtual foo2();
 int data1;
};

A’s vtable

A::foo1()

A::foo2()

B’s vtable

B::foo1()

A::foo2()

B::foo3()

A’s layout

vtable *

data1

B’s layout

vtable *

data1

data2

class B : public A
{
 virtual foo1();
 virtual foo3();
 int data2;
};

Multiple inheritance

• Implemented by concatenating layout of base classes together
• Including vtable pointers
• If two functions in base classes share signatures, compiler can’t

always disambiguate
• Pointers to base classes of the same object are not always the

same
• Cost of multiple inheritance:

• one vtable per class
• one vtable pointer per parent class per object
• one virtual base class pointer per use of virtual base class
• a virtual base class adds an extra level of indirection

• affects virtual and non-virtual calls
• normal virtual function calls are the same as single inheritance

Regular multiple inheritance

class A { … };
class B : public A { … };
class C : public A { … };
class D : public B, public C { … };

A

C

D

B

Vtable*

A Data Members

B Data Members

C Data Members

D Data Members

Vtable*

A Data Members

D’s footprint:

Virtual multiple inheritance

class A { … };
class B : virtual public A { … };
class C : virtual public A { … };
class D : public B, public C { … }; B Data Members

vtable*

virtual base class*

C Data Members

vtable*

virtual base class*

D Data Members

A Data Members

vtable*

A

C

D

B

D’s footprint:

(Note how I've used a different possible class layout here.
Class layouts are compiler-dependent, not prescribed by the language itself.)

Run Time Type Information (RTTI)

• RTTI relates to two C++ operators:
• dynamic_cast<>
• typeid()

• How does RTTI work?
• Compiler inserts an extra function into a class’s vtable
• Memory hit is per class, not per instance
• Only pay the speed hit when you use RTTI operators

• Maximum single inheritance cost is the same as a
virtual function times depth of inheritance hierarchy
for that class

• Multiple inheritance is slower

RTTI implementation

User Code:

class A
{
 virtual ~A();
};

class B : public A
{
};

A* foo = SomeFoo();
B* bar = dynamic_cast<B*>(foo);

Compiler generated casting function:

void* cast(void* obj, type dest)
{
 return mytype == dest ? obj : 0;
}

void* siCast(void* obj, type dest)
{
 if (mytype == dest)
 return obj;
 else
 return base->cast(obj, dest);
}

dynamic_cast<> in multiple inheritance

Operator overloading

• Most operators in C++ can be overloaded
• Can't overload: . ?: :: .* sizeof typeid
• Shouldn’t overload: , && ||
• Principle of Least Astonishment

• Operators have function signatures of form “operator
<symbol>”, example :
• Foo& operator + (Foo& a, Foo& b);

• If you ever implement your own operators (I.e. write a
math library) need to understand C++11 move semantics
to avoid redundant copies

Templates

• Macros on steroids
• Evaluated in a similar fashion to macros, but are type-

safe.
• Can be templatized on types or values

• Code is generated at each template instantiation
• Everything must be defined inline
• Templatized class is parsed by compiler and held
• When a template class is instantiated, compiler inserts

actual classes into parse tree to generate code.

These two examples will generate identical code

template <class T> class foo
{
 T Func(void)
 { return bar; }
 T bar;
};

foo<int> i;
foo<char> c;

class fooInt
{
 int Func(void)
 { return bar; }
 int bar;
};

class fooChar
{
 char Func(void)
 { return bar; }
 char bar;
}

Templated Code Bloat

• Not one, but two ways to bloat code!
• Because templates must be defined inline, code may

be inlined unintentionally
• Each instantiation of new templatized type causes the

creation of a large amount of code
• Combating code bloat

• Separate non-type-dependent functions into non-
templatized functions or base class

• Use templates as type-safe wrappers for unsafe
classes

• When templates are not inlined, duplicate symbols are
generated which the linker must strip out

Templates (cont’d)

• Templates can interact fine with derivation hierarchy and
virtual functions
• But the specializations are not naturally related in any

way
• Templates cannot be exported from libraries because no

code exists
• Instantiated or fully-specialized template classes can

Exceptions

• Provide a way to handle error conditions without constant
checking of return values

• Problems to be solved by exception handling
implementation:
• Finding correct exception handler
• Transferring control to exception handler
• Destroying objects on the stack

Finding the correct exception handler

• Table of handlers is kept
• one per try/catch block
• also stores reference to the next (parent) try/catch

frame
• Global pointer to current try/catch frame is stored

Passing control to exception handler

• At the beginning of each try/catch block the current stack
state is stored (setjmp)

• If an exception occurs the runtime searches the try/catch
frame for an appropriate handler, resets the stack frame
and passes control (longjmp)

Destroying objects on the stack (x86)

• For each function an unwinding table of all stack allocated
objects is kept
• Current initialization state is kept for each object
• When an exception occurs, current unwind table and

all above it but below the handler’s frame have all
valid objects destroyed

• The table is created even for functions with no try/catch
or throw statements
• Extra work per stack allocation/deallocation
• Extra work at start and end of a function

Exceptions Example (X86)

C++ Code
void Test(void)
{
Foo a;
Foo b;
}

 No Exceptions
?Test@@YAXXZ PROC NEAR
push ebp
mov ebp, esp
sub esp, 72
push ebx
push esi
push edi
lea ecx, DWORD PTR _f$[ebp]
call ??0Foo@@QAE@XZ
lea ecx, DWORD PTR _g$[ebp]
call ??0Foo@@QAE@XZ
lea ecx, DWORD PTR _g$[ebp]
call ??1Foo@@QAE@XZ
lea ecx, DWORD PTR _f$[ebp]
call ??1Foo@@QAE@XZ
pop edi
pop esi
pop ebx
mov esp, ebp
pop ebp
ret 0
?Test@@YAXXZ ENDP

With Exceptions
?Test@@YAXXZ PROC NEAR
push ebp
mov ebp, esp
push -1
push __ehhandler$?Test@@YAXXZ
mov eax, DWORD PTR fs:__except_list
push eax
mov DWORD PTR fs:__except_list, esp
sub esp, 72
push ebx
push esi
push edi
lea ecx, DWORD PTR _f$[ebp]
call ??0Foo@@QAE@XZ
mov DWORD PTR __$EHRec$[ebp+8], 0
lea ecx, DWORD PTR _g$[ebp]
call ??0Foo@@QAE@XZ
lea ecx, DWORD PTR _g$[ebp]
call ??1Foo@@QAE@XZ
mov DWORD PTR __$EHRec$[ebp+8], -1
lea ecx, DWORD PTR _f$[ebp]
call ??1Foo@@QAE@XZ
mov ecx, DWORD PTR __$EHRec$[ebp]
mov DWORD PTR fs:__except_list, ecx
pop edi
pop esi
pop ebx
mov esp, ebp
pop ebp
ret 0
_TEXT ENDS
; COMDAT text$x
text$x SEGMENT
__unwindfunclet$?Test@@YAXXZ$0:
lea ecx, DWORD PTR _f$[ebp]
call ??1Foo@@QAE@XZ
ret 0
__ehhandler$?Test@@YAXXZ:
mov eax, OFFSET FLAT:__ehfuncinfo$?
Test@@YAXXZ
jmp ___CxxFrameHandler
text$x ENDS
?Test@@YAXXZ ENDP

Exceptions (x86)

• This behaviour means that exception handling costs even
when you don’t actually use it
• Most compilers have a flag to turn on/off stack

unwinding for exception handling
• This makes exception handling basically useless

though
• Exceptions are one of the few C++ constructs that have

fully deserved their bad reputation

• But...

Destroying Objects on the Stack (x64)

• For each function a static unwinding table of stack allocated
objects is generated by the compiler
• Current initialization state for each object is calculated

based on the program counter
• When an exception occurs current unwind table and all

above it but below the handler’s frame have all valid
objects destroyed

• The table is created even for functions with no try/catch or
throw statements
• But it’s done statically by the compiler with no runtime

overhead
• It does mean that throwing an exception is considerably more

expensive, but they should be rare, and if you don’t use them,
there’s no cost

Points to take with you

• Most of this is covered in “Effective C++” and “More
Effective C++” by Scott Meyers

• All of it is covered in the GCC source code
• Harder to read though (but comments are hilarious)

• Stroustrup and Ellis “Annotated C++ Reference Manual”
describes in detail how C++ concepts can be
implemented

