
Sound

1

Sound

"50% of the movie experience is sound”
- George Lucas

• Sound is used to create:
– Mood
– Ambience
– Drama
– Environmental clues
– Continuity
– Feedback

Practical Issues

• Real-time requirement
– Must keep the hardware fed at all times
– Drop-outs are much more noticeable

• Easy to annoy with bad sound
• Hard to impress with good sound
• Resource intensive

– Memory for uncompressed audio, in particular
• Final quality entirely dependent on hardware

– Lousy speakers sound lousy
• Wide variation of hardware

– May or may not support surround, hardware reverb, occlusion,
etc.

Different types of sound

• Sound Effects
• Music
• Ambiance
• Environment Effects and Processing

Sound Effects

• When something happens in the game that would make a
sound, make it.

• Some level of this is almost required to make the game
feel right

• Can use a very simple API
– playSound(“explosion”)

• Main concern is when / what to play

Music Playback

• Playback of sampled music
– Samples retrieved from disc for longer clips
– Very few restrictions on instrumentation

• Sequenced (i.e. MIDI)
– Score itself is very compact
– Instrument bank might be huge though
– Composers don't like the restrictions
– Information available about tempo, can be used for stitching

Music in Games

• Often we have to provide over 10 hours of musical score
for a game
– Contrast this with a movie score

• Two systems employed
– Big long audio tracks
– Compose the music out of smaller, stitchable clips, and play them

back with randomization and overlays
• Interactive Music

– Score changes to suit situation
– Very effective when done properly
– Chunks of music re-ordered and overlaid to create different

moods

Ambience

• Can add an incredible amount of depth and realism to a
scene
– Augments scene complexity beyond what graphics alone can

achieve
• Examples:

– weather (wind, rain)
– cityscape (footsteps, engine hum)
– nature (bird chirps, insect buzz, flowing water)

• Implementation:
– A looped track to define the general soundscape
– Periodic randomized event sounds (dog barks, police sirens, etc.)

• Generally an area effect
– Initiated with trigger volumes
– Cross fade between ambient zones

Environmental Effects

• Echoes
• Doppler shifts
• Sound occlusion
• Pitch bend
• Positional sound processing

Authoring Sound

• Record or buy?
– Much easier to use sound effects from other locations then with

some other content
• Import sound data

– Clean up pop, crackle, hiss
– Initial levels
– Loops
– Stereo effects
– Sequence points

Mixing

• Going to have a lot of different layers mixed together
– Background ambience effects

• Wind, crowd murmur, machinery hum, water
– Specific ambience effects

• Car horns in the distance, construction, aircraft flying overhead
– Foreground effects (foley)

• Engine, UI elements, collisions, tire screeching, dialogue
– Music

• Need to mix them together for sending final audio data to
speakers
– Some hardware will mix (“hardware voices”)

• Need to carefully consider how sounds interact (ducking,
etc)

Sound hardware & low level architecture

• Hardware cpabilities
– What compression formats does it support?
– Any built in effects or mixing?

• Unlike graphics, emulating almost all hardware sound
capabilities in software is practical

Compression

• Due to the size of audio data, it is always compressed on
disc, and uncompressed before use.
– Could be very late, particularly if hardware can read compressed

format directly
• There is usually hardware to do this for you.

– May need to decompress in software if you want to use an
unusual format (OGG for example)

– Licensing issues
• Lossless, and lossy schemes are employed.

– Lossless (MLP, FLAC): 2:1
– Lossy non-perceptual (ADPCM): 2-4:1
– Lossy perceptual (MP3, AAC, OGG): 6-12:1

Sound Hardware

• Often have build in in capabilities
– Hardware decompression
– Hardware voices / mixing
– Surround sound decode
– Hardware effects

• Can often emulate well in software if you don’t have them
– Amenable to SIMD & Multi-core optimization
– Need to be sure you can run the operation fast enough

Sound Software Architecture

• At least two layers
– Hardware abstraction

• Platform abstraction, manages hardware resources, buffer
management, I/O, mixing, positional, effects

• Often runs in its own thread
– Game layer

• Event processing, entity management

• Needs
– Listener position (often the camera position)
– World representation
– Event passing mechanism
– Resource management (streaming) system

• Game sends high-level events to sound system
– Sound engine interprets events and takes appropriate action

Synchronisation

• Matching visuals to acoustics
– Audio time and game time tend to drift apart
– Need accurate clock to avoid drift
– Start animation and sound simultaneously
– Drive animation from sound events

• E.g. end of phoneme triggers next animation in speech
– HAL often provides sample notification events

• or use timers or polling
– Drive long cinematic sequences with “sound sample clock”

• I.e. measure time by how much sound has actually left the system
– Beware of external equipment latencies

• Bluetooth headphones, etc
• Although there is little you can do about them

Clipping

• Occurs when mixed dynamic range exceeds hardware
capabilities

• Hardware either:
– wraps (argh!)
– clamps (still sounds awful)

• Bad, very bad, nasty, awful when it happens
• Avoid by not running full volume voices
• Counteract with DSP

– Dynamics compressor/limiter

Streaming

• Needed when:
– Sample too big to fit into memory
– Hardware has limits on sample size
– Decompression is required

• Use double or ring buffer
– Ring is more space-efficient
– Need 1-2 seconds in buffer

• More if disk access is shared
– Use sample notifier or timer to start next fetch

• Don’t use when latency is a concern
• Remember: drop-outs are bad

Conclusion

• Important aspect of the feel of your game
– But less easy to notice than graphics

• Give it due time in your schedule

• Be aware of hardware capabilities

