
Memory & Game Content

1

Memory is precious

• Memory is precious, especially on simpler
devices.
– Even on PCs need to be cautious, using too much

memory tends to drive you off a performance cliff
• For consoles, memory fragmentation can be a

problem as well as memory exhaustion
• As with performance, memory optimization gives

you space to improve your game with more
content

Memory analysis

• We should account for three types of memory:
– Code

• Not going to cover in detail
• Only thing you sometimes need to think about: statics and

globals go in code memory
– Stack
– Heap (global/shared/dynamic memory)

• Let’s look at the latter two types in detail

Stack Memory

• Usually a specific portion of memory earmarked
by the system
– Per thread
– The programmer might have a say in this. For example,

set during thread allocation
• Things that go on stack

– Per function overhead
– Local variables in function

• Multiple stack frames on stack as functions call
each other

void some function()
{

int i[16]; //64 bytes on stack
}

Stack Memory

• Don’t blow the stack!

• This was an actual bug encountered in Prototype
• Replacing the above with a non-recursive while

loop fixed the problem.
• Another example of risky stack usage:

// Dangerous linked-list deletion!
void DeleteNode(Node* n)
{
 if (n == NULL) return;
 DeleteNode(n->mNext);
 delete n;
}

 SomeBigStruct temp[65536]; // !!??

Heap Memory

• Refers to dynamic memory available.
– Allocated/freed via new/delete and malloc/free

• May be organized into a hierarchy of heaps, for
budgeting purposes.
– E.g. World art should not take up more than 1 GB.
– Budget usually determined, enforced and tweaked by

senior programmers on the game team.
– If so, need to overload new/delete (or malloc/free)

• Sometimes use custom allocators for specific
heaps

Alternate allocation strategies

• Pools
– Create/delete fixed-size objects, up to a maximum.
– Very efficient, but can only typically create a single type

of object.

• Linear allocation:
– Advances pointers as we allocate.
– Doesn’t keep track of each allocation – frees everything

together.

• Recycling
– Don’t allocate, figure out ways to reuse objects

Loading Content

• Alright, what do we fill memory with?
– Art assets

• Typically pre-processed offline, optimized for both memory
and performance.

• Meshes, textures, lighting, animation, audio
– Design assets

• Behaviour trees, mission scripts, physics tuning data, prop
definitions, spawn data, etc.

– Game entities
• Characters, props, vehicles, etc.
• Often allocated dynamically, strong candidates for pooling or

recycling

• Need to define data formats for loading these

Parsing Data

• Data formats can be categorized into:
– Object serialization style formats: Simple structures with

properties like floats, ints, strings, etc.
• Usually somewhat generic, easy to add new types
• Possibly mapped to game objects via some binding system
• Can often exist in text or binary forms

– Binary-only custom format: E.g. DDS textures, WAV audio
files, etc.

– Memory images
• Intended to be used as is directly in memory, no parsing
• Often somewhat platform-dependent

Text or Binary?

• For data exported from third-party software, binary
might be the only option (e.g. DDS textures, WAV
files)

• If exporting is done by our own software, text files
are certainly easier to:
– Look at, and
– Check for differences between versions

• However, it’s faster to load binary files, so you
might want to convert the text files to binary through
the asset pipeline

• For you: Use a text file format with an existing
parser
– JSON, YAML, XML (if you are a horrible monster)

Finding objects

• Once objects are loaded, we typically need to find
them by name later.

• One Approach:
– Store name in object data during load
– Put it in a hash table
– Look up by name

• You: can load objects directly from disk by (file)
name

// Find an animation!
Name animName = “walk”;
Animation* anim = animationsInventory->Find<Animation>(animName);

Other Loading Considerations

• Media
– DVD / Blue-rays are quite slow. Need lots of tricks to work

around load contention
– HDD are much faster but still too slow to fill gigabytes of

RAM in time
– Latest platforms use SSD (Flash memory)

• Concurrency
– I/O should generally be asynchronous (can be done with

async API to avoid you writing multithreaded code)
– Can often make parsing asynchronous as well (that usually

does mean your code is multithreaded)

Other Loading Considerations

• Pack files
– Often want to have multiple files concatenated into a single

large file
– Simplifies installation
– May speed up or simplify disk reads
– Could use standard format (like zip)
– Could compress as well.

• Memory mapping
– Although consoles don’t generally support virtual memory,

can still use MMU to memory map files from disk
– May be faster, MMU has tricks not available to regular

programmers

Hard-code or script?

• Sometimes need to decide whether to put
something in code or in data. For example:
– How should a monster react when you attack it?
– What’s the maximum speed for a car when you drive it?

• Hard-coding is sometimes quicker to “get it done”
• But, it’s usually slower to iterate with code changes
• Remember: iteration is king!

– Best solution: reload settings without restarting the game

Summary

• Memory allocation and data loading strategy are
critical aspects of game performance

• For your project, focus on ease of iteration
– Prefer text over binary assets
– Prefer configuration files over hard-coding
– Prefer hot-reloading of data

