
Project Management

1

Project Management

• One of, if not the most important, aspect of
software development

• Also one of the most neglected in the hurry to get
down to implementation
• Programmers aren't good at it

• We'll describe something light and easy, suitable
for your type of project
• Inspired by Agile methods

Background

• Large-scale software development & IT projects are
plagued with high failure rates:
• Late
• Over budget
• Low quality
• Product does not meet customer’s actual need

• Why? Lots of reasons have been proposed:
• Writing software is essentially solving problems
• High degree of uncertainty (requirements, platform,

process)
• Tendency to over-engineer and/or lose focus
• Integration problems – incompatible platforms, 3rd party etc.
• Building a plane while flying it

Is games development similar?

• Yes & no
• Similarities:

• It's software
• The general phases of development are the

same
• Many of the problems are the same:

• Bad estimates
• Changing requirements
• Poor tracking

• There are also differences…

Is games development different?

• Fun is the primary goal but hard to pin down
• Gameplay is emergent, unlike storytelling
• Serendipitous outcome from collaboration between multiple

disciplines
• Can be hard to tell if you’re on the right track until everything

is in place
• Inventive nature of the work
• Frequent changes in direction

• You never know if the code you write will be thrown out
• Hard deadlines:

• Launch date often determined by external factors

Code, design and art

• A game is really three projects running in parallel
• Cross-dependencies can be large & constantly changing
• Work to minimize them

• Designers and artists shouldn't need code work to get new
content into game

• Coders don’t need final art to implement a feature
• Make sure schedule changes in one area don’t hold up

another
• Having some things solid before starting anything else

is great
• Design before production start would be great (preproduction,

MVP)
• Studios working on sequels have solid technology before even

beginning content creation
• Can purchase tech to get a bit of a head start

Schools of thought

• Control the uncertainty:
• Heavy upfront design
• Sign-offs
• Build to specification
• Structured customer involvement

• Embrace the uncertainty:
• Iterative & adaptive processes
• People-oriented processes
• Frequent deployment & feedback
• Collaborative customer relations

One Agile approach to scheduling

• The creative nature of game development resists
heavy up-front, on paper design
• Iterative methods embrace the chaos more

effectively
• We've broken up your assignments into several

external milestones
• Goal: a working version of a game that

incrementally converges to the final product
• So, how could you go about working on your

milestones?

Creating a feature backlog

• Define the features that comprise your game
• Organize them top-down
• Derive this from your high concept (assignment #1)

• Choose an appropriate level of abstraction
• Put down as much detail as is relevant for now

• The whole team should agree with this list
• Recruit feature owners
• Agree on a process for updating this list as things

change
• Who is the keeper?
• Do we meet to discuss every X weeks?
• How will we share this list?

Estimation and prioritization

• For all the features, estimate time to complete all
aspects of the feature
• Coding, tuning, testing, documentation, integration
• Be conservative, pencil in some time for learning
• Adjustments can and will be made throughout the project
• Consult with us if you need help

• Determine how important the feature is to the quality
of the final product (impact)

• Priority is a function of cost (time) to complete and
the impact to the project
• Watch for high-impact, low-cost features (high priority),and

low-impact, high-cost features (low priority)
• Reflect priority in your backlog (optional)

Risk management process

• Identified risk can be managed:
• Known knowns, known unknowns, etc
• Unknown risk will bite you at some point

• Identify risk:
• Regular discussion and reviews

• Deal with risk proactively, i.e. eliminate it up-front:
• Attack the riskiest tasks first, but time-box them
• Have a back-up plan
• Or leave them as “wishlist”

• Deal with it reactively, i.e. when it happens
• Requires clearly defined triggers
• Requires a contingency plan upfront
• Needs padding to execute the backup plan

• Add extra padding for risks that you haven't identified

Your project risks

• Name a few?

Setting goals & deliverables

• Internal vs external milestones
• Get together as a team

• Examine the feature list
• Agree on what features can be completed for the milestone

• What needs to be done first
• How much you should aim for
• Create a milestone backlog

• Agree on who will drive each feature
• Take ownership
• Take initiative

• Record everything – paper or software

Task breakdown & estimates

• Before implementation, break down tasks into
chunks (between two hours and three days)

• If a feature requires technical design, make this a
task

• If a feature needs special investigation, make this a
task e.g. “figure out & prototype how to connect a
PC controller”

• Don’t forget non-code content: art, audio
• Don’t forget about integration, testing & tuning
• Try to balance out responsibility & tasks so

everyone finishes at the same time

Task breakdown: gotchas

• Beware of vague tasks
• E.g. “Graphics Engine: 2 weeks”

• If a task estimate is longer than 3 days, break it up
into smaller subtasks:
• “Graphics Engine: 3 weeks” as a summary of:

• mesh rendering: 3 days
• background rendering: 1 day
• vehicle rendering: 3 days
• text system: 2 days
• etc.

Dependencies and bottlenecks

• Task A has to be completed before work on task B
can begin
• Dependencies lengthen the schedule
• Exist across tasks and across people
• Create bottlenecks
• Need to be anticipated and taken into account

when scheduling
• Project management tools can show you this

graphically (in theory)
• Constant vigilance
• Tight communication

Creating a milestone schedule

• First pass:
• List all tasks to be completed in breakdown
• Determine who will complete each task
• Add up completion estimates
• Agree on order of tasks
• Set some intermediate due-dates

• This will generate an initial completion date for the
milestone at the current level of scope

• The first estimate will be:
• Very late
• Wildly optimistic

Scope the feature backlog

• Scoping is the process of dropping tasks/features
of the game to make the milestone schedule
achievable

• Start with lowest-priority features first and keep
cutting until the total estimate fits within the
milestone

• If there is nothing left to cut, you go into crunch
mode
• Hopefully that experience will encourage you to scope

more drastically next time ;)

Tracking progress – scrum style

• Get together every day for a 15-minute meeting
• Everyone answers three questions:

• What did you do since the last meeting?
• What are you doing until the next meeting?
• Is there anything impeding your progress?

• The first two questions are used to track the
progress of the milestone (are you late?)

• The third identifies issues that require additional
action (recall risk analysis)

• Leave paper trail
• Stand up ;)

Adjustment

• What do you do when things start to go off the rails?
• Use up some of the contingency time
• Steal time from another task or milestone
• Work longer hours to "make up the time"
• ► Redefine the task (reduce scope) ◄

• Projects that are behind schedule stay that way
unless decisive action is taken to fix the problem
• “Adding human resources to a late software project makes it

later” - Fred Brooks
• Daily meetings catch problems quickly

• Excessive overtime creates stress, degrades
morale, and ultimately lowers the quality of the
product
• The only way to avoid it is by being proactive

Shipping a milestone

• Give yourself a couple of days before the milestone date for
integration and testing
• Last minute feature additions will destabilize the build
• Code & content cut-offs?

• Get ready for the next one
• Were any features incomplete?

• Throw them back onto the master feature list
• Conduct a post-mortem, adjust the process
• Be honest about your velocities
• Revisit master feature list
• Examine priorities, make adjustments, estimate with new refined

knowledge
• If adding features to the game, use a zero-sum approach

• An equivalent cost feature has to be removed
• Repeat!

Summary

• It takes effort to keep a project on schedule

• You can’t completely control uncertainty and risk
• Stay flexible
• Re-examine the schedule often
• Be prepared to make tough decisions

