
A

Ben Stephenson and Wade Holst
University of Western Ontario, London, Ontario, Canada

ben@csd.uwo.ca wade@csd.uwo.ca

Specialized Java bytecodes provide functionality that is easily
replicated using other Java bytecodes. This study uses profiling
to explore how the set of specialized bytecodes currently imple-
mented by the Java Virtual Machine is utilized by comparing it
to the other specialized bytecodes which could have been imple-
mented.

The Java Virtual Machine Specification defines the functionality
of 201 distinct bytecodes. These bytecodes are used to represent
the methods within a Java class file. At runtime, the bytecodes
are executed, either using an interpreter or a just-in-time com-
piler. This study examines these bytecodes by categorizing them
as either general purpose or specialized. The utilization of cur-
rent Java bytecodes is examined through profiling, a new alterna-
tive set of specialized bytecodes is proposed, and the suitability
of each set of specialized bytecodes is evaluated by examining its
impact on class file size and benchmark performance.

Java bytecodes can be classified as general purpose or specialized.

General Purpose: Bytecodes that provide unique function-
ality that cannot easily be replicated by one, or a short sequence
of other bytecodes.

Specialized: Bytecodes that provide functionality that is eas-
ily replicated by one bytecode, or a short sequence of bytecodes.

Examples:

•aload 0 is equivalent to aload 0x00

•istore 3 is equivalent to istore 0x03

•iconst 2 is equivalent to bipush 0x02

•ifle is equivalent to iconst 0 if icmple

This study considers specialized load and store bytecodes in de-
tail.

The following benchmarks are considered in this study:

•SPEC JVM98 Benchmark Suite

• Java Grande Forum Benchmarks

•Ashes Suite Collection

Each benchmark was executed on a modified implementation of
the Kaffe virtual machine which recorded every bytecode exe-
cuted, along with its operands. Performance testing was con-
ducted on the distribution and modified versions of the Kaffe
virtual machine using its interpreter and JIT3 execution engines.

Local variables can be loaded onto the operand stack using both
specialized and general purpose bytecodes. Figure 1 shows the
most frequently executed load bytecodes. Specialized bytecodes
are shown in blue while general purpose bytecodes are shown in
yellow.

Figure 1: Load Bytecodes Executed with Greatest Frequency

Figure 2: Load Bytecodes Executed with Least Frequency

The load bytecodes executed with least frequency are shown in
Figure 2. We note that four specialized load bytecodes are present
in this list, including fload 0, which is never executed by any of
the benchmarks tested.

Why are some specialized load bytecodes executed
infrequently? Why are some general purpose load
bytecodes executed with great frequency?

Type Symmetry: An equal number of bytecodes are devoted
to lead each of the 5 basic types supported by the JVM (object,
double, float, int, and long). However, integer operations are
performed with greatest frequency.

Receiver Object Parameter: The receiver object is always
passed as the first parameter to instance methods. Consequently,
loads of non-object type never occur from slot 0 in an instance
method.

Like loads, stores from the operand stack to a local variable can be
performed with both general purpose and specialized bytecodes.
Figure 3 shows the distribution of store bytecodes executed with
greatest frequency.

Figure 3: Store Bytecodes Executed with Greatest Frequency

Figure 4: Store Bytecodes Executed with Least Frequency

Specialized store bytecodes are also found among the least exe-
cuted store bytecodes. In particular, we observe that 5 specialized
store bytecodes are present, including 4 which are never executed
by any of the benchmarks profiled as part of this study.

Why are some specialized store bytecodes executed
infrequently? Why are some general purpose store
bytecodes executed with great frequency?

Pass By Value Method Parameters: All method pa-
rameters are passed using pass by value semantics. In addition,
method parameters are stored in the first local variable slots. As
a result, slots for which specialized store bytecodes exist are fre-
quently used to hold method parameters. However, any change
to a method parameter is not visible in the calling scope. Thus,
stores to method parameters are uncommon, making the use of
specialized store bytecodes uncommon.

Receiver Object Pointer Invariance: The Java Virtual
Machine Specification specifically prohibits changing the pointer
to the receiver object within an instance method. Consequently,
none of the <t>store 0 bytecodes can every execute within an
instance method.

Specialized bytecodes are also used to load constant values onto
the operand stack. The most frequently used constant values are
shown in Figure 5.

Figure 5: Constant Loading Bytecodes Executed with Greatest
Frequency

The six most frequently used constants are loaded onto the
operand stack using specialized bytecodes, which is a better use
of specialized bytecodes than for either loads or stores. Further-
more, there are only 14 specialized constant loading bytecodes
compared to 20 specialized loads and stores.

Why are specialized constant loading bytecodes bet-
ter utilized than specialized load and store byte-
codes?

Type Symmetry: Specialized load and store bytecodes are
type symmetric – an equal number of bytecodes are allocated to
each of the 5 primitive types supported by the Java Virtual Ma-
chine. The specialized constant loading bytecodes are not type
symmetric. Half of the bytecodes are allocated to loading integer
constants while the other half handle constants of type float, long
and double.

Load / Store Symmetry: An equal number of specialized
bytecodes are allocated to loads and stores. However, the number
of loads performed is much larger than the number of stores. This
suggests that more specialized bytecodes should be allocated for
handling stores than loads.

An alternative set of specialized load and store bytecodes, de-
termined by profiling the benchmarks, is shown below. It is
asymmetric with respect to both the data types specialized and
number of load and store bytecodes.

Root Indices
aload 0 1 2 3 4 5 7 0xE
dload 0 1 2 6 7 8 9 0xB 0xD 0xF
iload 0 1 2 3 4 5 6 7 8 9 0xA 0xB 0xC 0x11 0x14 0x33
astore 5
dstore 1
istore 1 2 3 4

Figure 6: Change in Class File Size for the Library and
Benchmark Classes

Performing despecialization increased average class file size by
less than 1.7 percent in all cases. Using the new alternative set
of specialized bytecodes decreased class file size. However, the
reduction was less than 0.3 percent for each category considered.

Figure 7: Distribution of Bytecodes Executed using the
Specialized Bytecodes Defined in the Java Virtual Machine

Specification

Figure 7 shows the distribution of the bytecodes executed by the
JVM using the current symmetric set of specialized bytecodes.
The distribution of bytecodes executed using the alternative set is
shown in Figure 8. Using the alternative set of bytecodes has in-
creased the specialized load and store bytecodes from 24 percent
to 38 percent of all bytecodes executed.

Figure 8: Distribution of Bytecodes Executed using the
Alternative Specialized Bytecodes

Performance measurements were gathered for six of the bench-
marks profiled earlier in this study. Testing revealed that none
of the benchmarks showed a large change in performance as a
result of either despecialization or using our new, alternative set
of specialized bytecodes.

Figure 9: Runtime Performance by Benchmark

On average, the interpreter experienced a speedup for both de-
specialization and the alternative set of specialized bytecodes.
However, this performance change was less than 2.1 percent on
average, and less than 4.1 percent for any one benchmark.

When a JIT compiler was employed, performing despecialization
resulted in a performance loss of 1.4 percent on average while
using our alternative set of specialized bytecodes resulted in a
minor performance gain of 1.3 percent on average.

This study examined the impact specialized bytecodes have on
class file size and application performance. It considered both the
removal of existing specialized load and store bytecodes, and the
introduction of a new set of specialized load and store bytecodes
identified using profiling.

Each of these changes had a small impact on class file size. Per-
forming despecialization increased average class file size by 1.5
percent, while using the alternative set of specialized bytecodes
decreased class file size by an average of 0.1 percent.

Application performance was also tested. While a mixture of
improvements and losses were observed, all of the changes were
of very small magnitude. This leads us to conclude that spe-
cialized bytecodes are contributing very little to the Java Virtual
Machine. Consequently:

•When revisions are made to the Java Virtual Machine Specifica-
tion, specialized load and store bytecodes should be considered
for removal to make space for bytecodes that offer greater per-
formance or class file gains, or to reduce the complexity of the
virtual machine.

•Those involved in the creation of new intermediate languages
should carefully consider whether specialized bytecodes will
provide a benefit before including specialized bytecodes in their
specification.


