
CPSC 535

Assignment 2: The Discrete Fourier Transform

The goal of this assignment is to explore the properties of the discrete Fourier transform (DFT), a staple
in image and signal processing.

In class we looked at how a rectangular function is transformed into a series of complex coefficients. These
coefficients represent the frequency content of the rectangular pulse. When the coefficients are expanded and
added, they reconstruct the original function. For this assignment you will reproduce that analysis using the
DFT, in two dimensions, while animating the expansion and reconstruction process.

Section 3.2 of Sonka, Hlavac and Boyle covers the Fourier transform.

1 Animate the Expansion of a DFT

Working in Octave, create an image of size 32 by 32, in which every pixel has a grey value of 64. Within
this image, place a square region of pixels with a grey value of 192, size 16 by 16, in the center. View this
image, call it f , using gsplot. Compute the two-dimensional discrete Fourier transform of this image, F ,
using the Octave function fft2.

Octave addresses the elements of F as shown in Figure 1(a), that is, indices start at 1 and go up to the
number of rows or columns. Unfortunately, these indices do not refer to the spatial frequencies, u and v

directly. These are given in Figure 1(b) and are necessary because the DFT is a periodic function. For the
purposes of animation in this assignment, we let w = |u| + |v|, and add expanded coefficients in order of
increasing w.

Write Octave code to do the animation as follows.

1. Initialize the reconstructed image to all zeros, f̂ = 0.

2. For k = 0 . . . wmax do

• Create an image containing only the coefficients from F for which w = k, Fk, using

Fk(i, j) =

{

F (i, j) w(i, j) = k

0 otherwise

• Expand the coefficients in Fk, using the inverse two-dimensional FFT, ifft2, to get fk.

• Update the reconstructed image using
f̂ = f̂ + fk

• Plot f̂ .

Hints:

1. The easiest way to compute Fk is to create the array w that contains values of w for each row and
column, then use the Octave statement:

Fk = F .* (w == k);

2. To help create the array w, it is useful to know that you can make an array of identical rows by
multiplying a single row by a column vector containing all ones, e.g.,



(a) (b)

Figure 1: Addressing the output of DFTs in Octave: (a) the row and column indices used by Octave, and
(b) the corresponding values of u and v.

u = ones(n,1) * [0:n/2-1 -n/2:-1];

3. The Octave pause function may be useful for slowing down the speed of the animation, if necessary.

4. ifft2 returns complex numbers. If you are doing things correctly then the Fks have the correct symmetry
properties to make the fks real. Use this when converting the complex variables to real for plotting.

When this animation is working, try changing the original function f . Make it wider, narrower, rotate it,
make it asymmetrical, and try different shapes. Also, take a look at the Fourier basis functions themselves.
This should help you to answer the questions that follow.

2 Images

While the animation in the previous section can help you understand the properties of the DFT, it is
important to relate this to what you see in an image. You will be provided with a disk containing a bmp

image file with your picture, should you desire it, that you can use as a sample image. You may opt to use
a different image.

Although Matlab offers utilities for reading a variety of image file formats, Octave is somewhat limited.
I prefer to use pnm read and pnm write. These are provided for you. To convert your bmp file to a pgm

file of smaller dimension I suggest the following:

bmptoppm image.bmp | ppmtopgm | pnmscale 0.25 > image.pgm

Repeat the animation done for the previous section, but rather than plot the image data, save it to a pgm

image file. You can then view the animated sequence using xv.
Hints:

1. Assign names to the file in the output image sequence using the following

name = sprintf( "base.%04d.pgm", k );

where k is the frame number in the sequence. This will give the file names base.0000.pgm, base.0001.pgm,
and so on.

2. View the animation with xv using



xv -wait 0 -wloop -expand 4 base.*.pgm

The naming convention outlined above will guarantee that the images are displayed in the right order.

3 Questions

1. Describe a convenient way to compute the basis functions, as suggested in Section 1.

2. What does the transform of an image of all zeros and a single pixel with a value of one, i.e., a
discrete Dirac delta function, look like? What is the significance of the delta function with respect to
convolution?

3. If you rotate an image by θ degrees, what happens to the DFT of the image? Hint: try the following
in Octave.

• x1 = zeros(32);

• x1(14:18, 8:24) = 255;

• pnm_write( "pgm-raw", "x1.pgm", x1 );

• from the unix command prompt run xv x1.pgm. You should see a black image with a white
rectangle. Use the clear rotate algorithm from xv’s Algorithm menu. Rotate 30 degrees. Save the
rotated image as x2.pgm.

• x2 = pnm_read( "x2.pgm" );

• X1 = fft2(x1);

• X2 = fft2(x2);

• Now look at the two DFTs for x1 and x2.

4. Compare the DFTs of two one-dimensional functions, each with a rectangular pulse, but in different
positions. What can you say about the magnitude (use abs in Octave) of the DFTs? About the phase
(use arg in Octave)? What can you say in general about the effect of translation in an image on the
DFT?

Hand In

1. Cover sheet with your name, course number, and assignment number only.

2. Name and student ID number inside the cover sheet.

3. Answers to the questions.

4. E-mail your .m file of Octave code that animates the DFT expansion for both f and your sample
image to your TA.

Marking

Assignment grades will be based on

1. answers to the questions, and

2. the quality of your Octave code.

Your code should be correct, readable, well-documented, and modular. Octave and Matlab are not very
readable languages, but you should still be able to produce good-quality code that is maintainable.


