
CPSC 535

Assignment 8: Stereo Vision

The goal of this assignment is to write octave code to implement a simple algorithm to compute
stereo disparity.

1 Stereo Disparities

Computation of stereo disparities requires matching of pixels in a left-eye image to pixels pixels in
a right-eye image. If the cameras are aligned and their optical axes parallel, then a left-image pixel
can only match a right-image pixel in the same row. If the optical axes converge then it becomes
necessary to consider the where the epi-polar lines are in each image. To keep things simple (usually
a good idea), we will assume that we have cameras that are aligned with parallel optical axes. Thus
we only need to look for matches between images in the same row.

The approach we will use is to find, for each left-image pixel, the disparity that gives the best
match to a right-image pixel. Looking at a single pixel will not work well since we have the potential
to match spurious noise in the image. Instead, we match pixels by considering the quality of match
in a region around a pixel. This effectively smoothes the matching process making it less susceptible
to noise.

If one were to implement the algorithm by looping through the pixels and seeking a best match at
each pixel, the result would be an inefficient algorithm because of the many redundant calculations.
The algorithm in Figure 1 re-arranges the nesting of loops to remove the redundancies. G(σ) is a
Gaussian smoothing kernel. M is a measure of similarity between L and a shifted R. Small values
of M indicate a better match. For each disparity M is computed, then, wherever M is smaller than
Mmin, there is a better match, so the algorithm records the disparity for that pixel and updates
Mmin. When the algorithm is complete, D will contain the disparities that produced the best
matches, i.e., the lowest M .

Write an octave function that implements the algorithm in Figure 1. Name it stereo and call
it using five parameters: L, R, σ, smin, and smax. The function should return a disparity map.
To do the Gaussian smoothing you may use the Deriche filter provided. There are two sources
of test images. The easiest is to use the function layercake, provided, to generate random-dot
stereograms with different disparity layers. I recommend you start here because that will give the
best results. Once you have your algorithm working, try it out with the other images I found while
browsing the internet. The images contain left- and right-eye views in a single image file so you
will have to separate the two images. These images are more complex than the layercake images
so the results will not be perfect.

Write a wrapper script that creates or reads a stereo pair of images, calls stereo, and displays
the result.

2 Options

If you have the time, you may want to experiment with the following ideas, but it is not required.

Input: L, R, the left- and right-eye images, S the set of possible dis-
parities, σ, width of Gaussian smoothing kernel.

Output: D, the stereo disparity image.

for s in S do
M = G(σ) ⊗ |L − shift(R, s)|
if first iteration

D = s

Mmin = M

else

for all pixels i, j do

dij =

{

s mij < mminij

dij otherwise

Mmin = min(M,Mmin)

Figure 1: Algorithm for computing stereo disparities

When matching regions of the image, you normally try to avoid matching noise. Also, broad
uniform regions are difficult to match because the match does not change with the disparity. This
leads the the concept of whitening. The idea is to pre-process the images with a filter that will
eliminate low-frequencies while still suppressing high-frequency noise. Recall that the LOG edge
detection filter can do this. Try applying an LOG filter to the filter input to see if it improves the
output.

Consider what happens when there are occluded surfaces in a scene (regions that cannot be
seen because something is in the way). It is possible in stereo that some part of a scene is visible in
one eye but cannot be seen by the other. The algorithm above finds a match, even though it should
not. One way to deal with this is to match L to R, and then R to L. You can then check to see that
the match from left to right is the same as the match from right to left. If they do not match then
the algorithm has failed because of an occlusion or some other reason and the disparity computed
for that point should be ignored. Try using the reverse match to verify that the forward match is
correct and produce a binary image that has ones where the match is valid and zero elsewhere.

Hand In

1. Your code to compute the stereo grams.

2. Plots of depth and/or disparity (gsplot from octave works well).

3. A description and explanation of any salient observations you make while working on this
assignment.

You will be graded on the quality of your code, your plots, and your written observations.

