1. Consider the Roberts basis vectors below:
$\mathbf{w}_{1}=\frac{1}{2}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] \quad \mathbf{w}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right] \quad \mathbf{w}_{3}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
$\mathbf{w}_{4}=\frac{1}{2}\left[\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right]$

It is possible to represent any 2-by-2 image region as a linearly combination of \mathbf{w}_{1} through \mathbf{w}_{4}.
(a) Show that the image region

$$
\left[\begin{array}{cc}
10 & 5 \\
5 & 0
\end{array}\right]
$$

is a linear combination of \mathbf{w}_{1} through \mathbf{w}_{4}. Hint: the amount of each basis vector can be determined by matching pixels.
(b) Show that the above statement is true, i.e., that it is possible to represent any 2-by-2 image region as a linearly combination of \mathbf{w}_{1} through \mathbf{w}_{4}.
(c) Describe, in words, what kind of image features correspond to strong matches with each of the four bases. Use this to describe the 2-by-2 region in part (a).
2. A camera takes a image, I, of a penny, a dime, and a quarter lying on a white background, not touching one another, their bounding boxes do not overlap. Thresholding is used to successfully create a binary image, B, with $\mathbf{1}$ bits for the coins and $\mathbf{0}$ bits for the background. You know the diameters of the coins D_{P}, D_{D}, and D_{Q} for the penny, dime and quarter respectively. Using the morphological operators dilation and erosion, and pixelwise logical operators $A N D, O R, N O T$, and $X O R$, show how to produce three binary output images: $P, D, Q . P$ should contain just the penny (as 1 s), D should contain just the dime, and Q should contain just the quarter.

3. The Prewitt masks (convolution kernels) for measuring image gradient in edge detection are:

$$
M_{x}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & 0 & -1 \\
1 & 0 & -1
\end{array}\right] \quad \text { and } \quad M_{y}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 0 \\
-1 & -1 & -1
\end{array}\right] .
$$

In the following steps, show that the Prewitt masks gives the weights for a best-fitting plane (in the least-squares sense) approximating the intensity surface in a 3-by-3 image neighbourhood.

Let $I_{r, c}$ be the image intensity at position r, c in the neighbourhood, so you have following 9 image intensities .

$$
\begin{array}{ccc}
I_{-1,-1} & I_{0,-1} & I_{1,-1} \\
I_{-1,0} & I_{0,0} & I_{1,0} \\
I_{-1,1} & I_{0,1} & I_{1,1}
\end{array}
$$

(a) Given the equation of a plane

$$
z=p r+q c+z_{0},
$$

each point in the neibourhood defines an equation of the form

$$
I_{r, c}=p r+q c+z_{0} .
$$

Write a linear system of 9 equations for the entire neighborhood of the form $A \mathbf{x}=\mathbf{b}$, where \mathbf{x} are the unknown parameters of the plane p, q, z_{0}, and \mathbf{b} are image intensities.
(b) The least-squares solution to $A \mathbf{x}=\mathbf{b}$ is given by

$$
\mathbf{x}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}
$$

Solve for \mathbf{x}. Show your work.
(c) From the result in (b), show that convolution with the Prewitt masks give p, and q.
(d) What is the significance of z_{0} ?

