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overview

• start with our basic linear system

Ax=b
• defines a quadratic function

• for certain forms of A, can solve system by 
minimizing the quadratic function
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generic linear system

• measure m values in b.

• want to know the n 
values in x.

• A defines relationship 
between b and x.

n

! 

A

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 
' 
' 
' 

 m

! 

x

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 

 n =

! 

b

" 

# 

$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
' 
' 
' 
' 
' 

 m

}
a generic linear system

defines a linear relationship

between what we know, and

what we want to know

what we 

want to know
what we can

observe and

measure

} }
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n-by-n system

• if A is square we get a 
generic n-by-n linear 
system
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invert and multiply

• if A is square we can 
invert and multiply to 
solve

• A must be non-
singular

! 

Ax = b

ˆ x = A
"1

b

 

move A to other side - 

invert and multiply

the solution 

we seek
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optimization

• as an alternative, can 
convert to an 
optimization problem

• form objective 
function, f(x)

• solve by finding 
minimum of f(x) x

f (x)
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ˆ x 

find the point that 

minimizes the 

objective function

the objective 

function
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objective function

• here is an objective function that converts 
an n-by-n linear system into an objective 
function for optimization

! 

f (x) =
1

2
x
T
Ax "b

T
x  

from generic n-by-n system
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some calculus

f(x) =
1
2

[
x1 x2 · · · xn

]





a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann









x1

x2
...

xn




−

[
b1 b2 · · · bn

]





x1

x2
...

xn





∂f

∂x1
= a11x1 + a12x2 + · · · + a1nxn − b1
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gradient

• collect partial 
derivatives into a single 
equation   
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"f = Ax #b
the gradient 

of f(x)
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optimize
• to find maximum or 

minimum set gradient to 
zero

• same as solving original 
n-by-n linear system

! 

"f = 0 = Ax #b

Ax = b
 

set the gradient 

to zero

the generic n-by-n 

linear system
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three ways to solve
invert and multiply
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why?

• faster

• time to compute A-1 or LU decomposition 
is in Θ(n3)

• often iterative optimization is faster

• give intuitive understanding of important 
properties of A
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max, min, or ?
• in 1 dimension

d2f

dx2
> 0 minimum

d2f

dx2
< 0 maximum

d2f

dx2
= 0 inflection

x

f(x)

x

f(x)

or

! 

df

dx
= 0

! 

df

dx
= 0a minimum

a maximum

n ≥ 2 is more complicated
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positive definite

• more complicated with 
two or more dimension

• f(x) has a minimum 
when A is positive 
definite

• eigenvalues of A are all 
positive

positive definite

f(x)

solution

xT Ax ≥ 0
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negative definite

• f(x) has maximum when 
A is negative definite

• if A is negative definite 
all eigenvalues are 
negative

• can use optimization

negative definitef(x)

solution
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saddle point

• if neither positive 
definite or negative 
definite then

• saddle point

• no max or min

• cannot use 
optimization

saddle point
f(x)

solution
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semi-definite

• if some eigenvalues are 
greater than or equal to 
zero, then A is semi-
definite

• minimum is not unique

• cannot minimize

positive

semi-definite

f(x)

solution
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Least-Squares 
Solutions for

Linear Systems
Jeffrey E. Boyd
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generic linear system

• measure m values in b.

• want to know the n 
values in x.

• A defines relationship 
between b and x.
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between what we know, and

what we want to know
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19



too many equations

• more equations than 
unkowns

• no solution

• find an average solution

• formulate as 
optimization

• minimize E

E = ‖Ax− b‖2

= (Ax− b)T (Ax− b)
= xT AT Ax− bT Ax− xT AT b + bT b
= xT AT Ax− 2bT Ax− bT b
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compare

• compare to f(x)

• optimize E the same 
way we optimize f(x)

• differentiate and set 
to zero

E = xT AT Ax− 2bT Ax− bT b

f(x) =
1
2
xT Ax− bT x
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result

• optimize E by solving 
this linear system AT Ax̂ = AT b
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properties of A
• if columns of A 

independent
• m >= n
• no column linear 

combination of 
another

• then ATA is 
symmetric, positive 
definite

• if columns not 
independent
• then ATA is 

symmetric, positive 
semi-definite

positive

semi-definite

f(x)

solution

positive definite

f(x)

solution
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graphically

solution 

here
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sample average

• suppose I have a m 
measurements of the 
temperature in the room

• what is the temperature 
in the room?

• x is the temperature

• b is a measurement

• for each measurement I 
get one equation

• 1x = b





1
1
...
1




x =





b1

b2
...

bm




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LS average

• the least squares 
estimate of the 
temperature is the 
average

• this is a good way to 
understand LS 
intuitively

A =





1
1
...
1





x = x

b =





b1

b2
...

bm





AT Ax̂ = AT b

mx̂ =
m∑

i=1

bi

x̂ =
1
m

m∑

i=1

bi
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weighted LS

• put more emphasis on 
some measurements 
than others with W.

WAx = Wb
AT WT WAx̂ = AT WT Wb
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W

• how do you choose W?

• for normally distributed 
measurement errors

• WTW is the inverse of 
the C, covariance of 
measurement errors

e = Ax− b
σij = cov(ei, ej)
σii = σ2

i = cov(ei, ei)

C =





σ2
1 σ12 . . . σ1m

σ21 σ2
2 . . . σ2m

...
...

. . .
...

σm1 σn2 . . . σ2
m





WT W = C−1
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when W diagonal

• simplify for 
understanding

• consider when W is 
diagonal

• measurement errors 
are independent

• measurements with 
larger errors get less 
weight

WAx = Wb



1
σ1

1
σ2

. . .
1

σm




Ax =





1
σ1

1
σ2

. . .
1

σm




b

WT W = C−1 = diag(
1
σ2

1

,
1
σ2

2

, . . . ,
1

σ2
m

)

29



computer vision

• consider

• what you can measure

• what you want to know

• relationship between the two

• form linear system

• solve
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