Linear Systems and Optimization
 Jeffrey E. Boyd

overview

- start with our basic linear system

$$
A \mathbf{x}=\mathbf{b}
$$

- defines a quadratic function
- for certain forms of A, can solve system by minimizing the quadratic function

generic linear system

- measure m values in \mathbf{b}.
- want to know the n values in \mathbf{x}.
- A defines relationship between \mathbf{b} and \mathbf{x}.

n-by-n system

- if A is square we get a generic n-by-n linear system

invert and multiply

- if A is square we can invert and multiply to solve
- A must be nonsingular

the solution
we seek

optimization

- as an alternative, can convert to an optimization problem
- form objective function, $f(\mathbf{x})$
- solve by finding minimum of $f(\mathbf{x})$

objective function

- here is an objective function that converts an n-by-n linear system into an objective function for optimization

$$
f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} A \mathbf{x}-\mathbf{b}^{T} \mathbf{x}
$$

from generic n-by-n system

some calculus

$$
\begin{aligned}
f(\mathbf{x})=\frac{1}{2}\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]-\left[\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \\
\frac{\partial f}{\partial x_{1}}=a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}-b_{1}
\end{aligned}
$$

gradient

- collect partial derivatives into a single equation

$$
\left.\begin{array}{l}
{\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{\partial x_{2}} \\
\vdots \\
\frac{\partial f}{\partial x_{n}}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]}
\end{array}\right]-\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
\vdots \\
b_{n}
\end{array}\right]
$$

optimize

- to find maximum or minimum set gradient to zero
- same as solving original n-by-n linear system
set the gradient
to zero
$\nabla f \stackrel{=}{=}=A \mathbf{x}-\mathbf{b}$
$A \mathbf{x}=\mathbf{b}$

three ways to solve

$$
\begin{gathered}
A=\left[\begin{array}{ll}
5 & 1 \\
1 & 2
\end{array}\right], \\
b=\left[\begin{array}{l}
7 \\
5
\end{array}\right]
\end{gathered}
$$

why?

- faster
- time to compute A^{-1} or $L U$ decomposition is in $\Theta\left(n^{3}\right)$
- often iterative optimization is faster
- give intuitive understanding of important properties of A

max, min, or ?

- in 1 dimension

$n \geq 2$ is more complicated

positive definite

- more complicated with two or more dimension
- $f(\mathbf{x})$ has a minimum when A is positive definite

$$
x^{T} A x \geq 0
$$

- eigenvalues of A are all positive

negative definite

- $f(\mathbf{x})$ has maximum when A is negative definite
- if A is negative definite all eigenvalues are negative
- can use optimization

saddle point

- if neither positive definite or negative definite then
- saddle point
- no max or min
- cannot use optimization

semi-definite

- if some eigenvalues are greater than or equal to zero, then A is semidefinite
- minimum is not unique
- cannot minimize

Least-Squares Solutions for Linear Systems

Jeffrey E. Boyd

generic linear system

- measure m values in \mathbf{b}.
- want to know the n values in \mathbf{x}.
- A defines relationship between \mathbf{b} and \mathbf{x}.

too many equations

- more equations than unkowns
- no solution

$$
\begin{aligned}
E & =\|A \mathbf{x}-\mathbf{b}\|^{2} \\
& =(A \mathbf{x}-\mathbf{b})^{T}(A \mathbf{x}-\mathbf{b}) \\
& =\mathbf{x}^{T} A^{T} A \mathbf{x}-\mathbf{b}^{T} A \mathbf{x}-\mathbf{x}^{T} A^{T} \mathbf{b}+\mathbf{b}^{T} \mathbf{b} \\
& =\mathbf{x}^{T} A^{T} A \mathbf{x}-2 \mathbf{b}^{T} A \mathbf{x}-\mathbf{b}^{T} \mathbf{b}
\end{aligned}
$$

- formulate as optimization
- minimize E

compare

- compare to $f(\mathbf{x})$

$$
E=\mathbf{x}^{T} A^{T} A \mathbf{x}-2 \mathbf{b}^{T} A \mathbf{x}-\mathbf{b}^{T} \mathbf{b}
$$

- optimize E the same way we optimize $f(\mathbf{x})$
- differentiate and set to zero

result

- optimize E by solving this linear system

$$
A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}
$$

properties of A

- if columns of A independent
- $m>=n$
- no column linear combination of another
- then $A^{T} A$ is symmetric, positive definite
- if columns not independent
- then $A^{T} A$ is symmetric, positive semi-definite

graphically

sample average

- suppose I have a m measurements of the temperature in the room
- what is the temperature in the room?
- x is the temperature
- b is a measurement
- for each measurement I get one equation - $1 x=b$

LS average

- the least squares estimate of the temperature is the average
- this is a good way to understand LS intuitively

$$
\begin{aligned}
A & =\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right] \\
\mathbf{x} & =x \\
\mathbf{b} & =\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right] \\
A^{T} A \hat{\mathbf{x}} & =A^{T} \mathbf{b} \\
m \hat{x} & =\sum_{i=1}^{m} b_{i} \\
\hat{x} & =\frac{1}{m} \sum_{i=1}^{m} b_{i}
\end{aligned}
$$

weighted LS

- put more emphasis on some measurements than others with W.

$$
\begin{aligned}
W A \mathbf{x} & =W \mathbf{b} \\
A^{T} W^{T} W A \hat{\mathbf{x}} & =A^{T} W^{T} W \mathbf{b}
\end{aligned}
$$

W

- how do you choose W ?
- for normally distributed measurement errors
- $W^{\top} W$ is the inverse of the C , covariance of measurement errors

$$
\begin{aligned}
\mathbf{e} & =A \mathbf{x}-\mathbf{b} \\
\sigma_{i j} & =\operatorname{cov}\left(e_{i}, e_{j}\right) \\
\sigma_{i i} & =\sigma_{i}^{2}=\operatorname{cov}\left(e_{i}, e_{i}\right) \\
C & =\left[\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \ldots & \sigma_{1 m} \\
\sigma_{21} & \sigma_{2}^{2} & \ldots & \sigma_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{m 1} & \sigma_{n 2} & \ldots & \sigma_{m}^{2}
\end{array}\right] \\
W^{T} W & =C^{-1}
\end{aligned}
$$

when W diagonal

－simplify for understanding
－consider when W is diagonal
－measurement errors are independent
－measurements with larger errors get less weight

computer vision

- consider
- what you can measure
- what you want to know
- relationship between the two
- form linear system
- solve

