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Abstract—Large, complex systems can exhibit unforeseen be-
haviours. In the case of surveillance and security systems, these
behaviours can be weaknesses that should be discovered by
automated testing and ameliorated. Previous work has shown
that such automated testing can be done using particle swarm
optimization to learn behaviours that allow a set of attackers to
defeat the system. However, for the optimization to succeed, it
must have some knowledge about what constitutes a successful at-
tack in order to guide the swarm. This knowledge is encapsulated
in a goal ordering structure. In this paper, we examine the goal
ordering structure and its role in the learning of system weakness.
We specifically look at applications in harbour surveillance and
security, and show how knowledge of the likely properties of a
successful attack can be added to the goal ordering structure.
Our experimental results show that adding knowledge to the goal
ordering structure improves the search, when that knowledge is
correctly inserted into the structure.

Index Terms—testing MAS, particle swarm optimization, un-
wanted behavior, MAS simulation

I. INTRODUCTION

Surveillance and security systems capable of observing and

protecting large installations like a harbour or an international

border are large and complex. The size of the system is an

inevitable consequence of the size of facility being protected,

but the complexity arises from several factors including:

• variety in sensors and platforms,

• the dynamic nature of sensors and platforms,

• the dynamic nature of the operating environment, and

• deployment policies.

A variety of sensors (such as visual, infrared, sonar, and

radar) is necessary as each has strengths and weaknesses that

vary over operating conditions. Platforms that cary the sensors

are often dynamic, e.g., pan-tilt (PT) heads change the field

of view of a camera, and mobile platforms (both manned

and unmanned) change a sensor’s position. The operating

environment is also dynamic as weather and human activity

(e.g., legitimate traffic in a harbour or workers in a secure

facility) changes. Finally, sensors and their platforms all have

some underlying deployment policy. E.g., a camera on a PT

head has a policy to determine where it should aim and when,

and a mobile sensor platform has a policy to tell it where it

should be located and when, how it should get there, and how

it should respond to events that occur.

As with any complex system of this size, it is difficult

to predict how it will behave in all circumstances. In some

cases, these behaviours are unwanted vulnerabilities and it is

desirable to discover them and ameliorate their impact on the

success of the system. Multi-agent simulations have proven to

be useful tools for human decision makers to evaluate complex

systems (e.g., see [1] and [2]). By controlling some agents in

a simulation, a tester can easily test a system for the desired

behaviours. However, it is difficult for a human to test for

unpredicted behaviours, and automated support for testing is

a necessity.

[3] presents an approach to provide this automated support.

The method learns coordinated behaviours for a set of attack

agents that result in the defeat of the subject system, i.e., a

success in learning means a system vulnerability is found.

The space of possible attack agent actions is large, so particle

swarm optimization (PSO) is used to learn the behaviors. A

goal ordering structure guides the swarm towards successful

attacks - the goal ordering structure encapsulates knowledge

about what is likely to make a successful attack. Although [3]

defines the goal ordering structures and shows one example,

other goal ordering structures are possible, and effective use of

other goal ordering structures can improve the learner’s ability

to find a weakness in the subject system.

In this paper, we show how additional knowledge can

be incorporated into a goal ordering structure to improve

the learning of attacks. We consider the testing of harbour

surveillance and security systems, and including knowledge

specific to attacks in such an application. To demonstrate,

we add to the goal ordering structure the knowledge that a

successful attacker should avoid defending patrol vessels. This

is not trivial - done naively, such knowledge can lead the

learner to favour behaviours in which the attackers never enter

the harbour. Done properly, the additional knowledge in the

goal ordering structure helps the learner to find attacks more

effectively, and to find qualitatively different attacks. We then

postulate expectations for variations of the improved goal or-

dering structure and experimentally verify these expectations.

Our results show that goal ordering structures are an effective

way to guide search, provided that the knowledge is inserted

into the structure in a suitable place.

II. BASIC CONCEPTS

This section introduces our method of testing by learning,

and then provides a short introduction to particle swarm

optimization.
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Fig. 1. A block diagram of our concept for testing policies by learning
cooperative behavior. The machine learner learns behaviours for the test agents
coordinated with the events agent, to defeat the policy agents in the simulated
environment.

A. Testing policies by learning behavior

Figure 1 shows our concept for learning behaviours to

test a subject system. All testing occurs in a simulated

environment, Env within which agents interact. Our sub-

ject system (the system being tested) consists of the pol-

icy agents Apol = {Agpol,1,...,Agpol,m}. While we refer to

these as policy agents, we are in fact testing all properties

of these agents that are simulated. A set of other agents,

Aother = {Agother,1,...,Agother,k} includes agents that are

in the environment, but are not the subject of testing. For

example, in harbour surveillance, other agents would include

legitimate harbour traffic. The set of test agents, Atest =

{Agtest,1,...,Agtest,n}, are the attackers that test Apol. Finally,

the system includes an events agent, Agevents, that can trigger

environmental changes in the simulation. Physically, this could

correspond to changes in weather or daylight.

In this context, testing is done by learning behaviors for

Atest and Agevents that defeat Apol, thereby revealing weak-

ness. While learning behaviours could be done by a human,

we use a machine learner to automate the process. Note that

while agents in Atest do not control environmental events,

they can exploit them in attacks. Therefore, the learner must

control both Atest and Agevents.

Let Acttest,i be the set of possible actions that an agent

Agtest,i can perform, and Actevents be the set of events that

Agevents can invoke in the simulation environment. Then the

learning process works as follows.

1) The learner selects a sequence of actions for Atest and

Agevents from Acttest,i and Actevents.

2) The environment simulation runs, producing a series of

observations of the environment, e0, e1, . . . , es.

3) Based on an evaluation of the observations, the learner

selects a new sequence of actions to test.

Our learner uses particle swarm optimization to steer the

selection of actions towards successful attacks, using the goal

ordering structure to compare the observations. As such, step

2 does several simulation runs per iteration of the system –

one simulation run per particle in the swarm.

B. Particle Swarm Optimization

Particle Swarm Optimization (PSO) [4] emulates moving

particles with the attraction behaviour of members of a swarm,

to perform a search in a solution space. The search state is a set

of particles pi, i = 1, 2, . . . , l, each of which is characterized

by its current position, posi, its current velocity, vi, and its

best position besti in the past. (Note that this is a velocity

in the solution space of an optimization problem, and not

to be confused with the velocity of physical agents in our

simulation.) The position of a particle is usually a vector of

continuous variables that represent a solution to the instance

of the search problem. In the basic case there is a single goal

function, f , defining the quality of a position (i.e., what is

best) and the goal of the search is to find a position that is

optimized with respect to f .

The search in the basic case is performed by updating each

particle in the state according to the following equations:

vnewi = Wvi+C1r1(besti−posi)+C2r2(Best−posi), (1)

posnewi = posi + vnewi , (2)

where W is a weight parameter controlling the influence of

the previous velocity, C1 is the cognitive learning factor,

C2 the social learning factor and r1, r2 ∈ [0, 1] change

randomly during the search. Best is the best position the

whole swarm has found up to any iteration of the search.

Iterations terminates either after a given number of update

rounds or when Best fulfills certain conditions. Best is the

optimum solution output by the algorithm.

For many applications, there is no single goal function

describing what is searched for, but instead we have a vector
~f = (f1,...,fq) of goal functions, leading to multi-objective

optimization. In these cases, we are not interested in a single

solution, since there is not one position that is optimal for all

goal functions, and positions that are very good for one fi
are often not as good for an fj (i 6= j). PSO can be easily

extended to deal with multi-objective optimization (see [5] for

an overview).

A key concept of multi-objective optimization (and for our

goal ordering structures) is the domination of one solution,

pos1, over another solution, pos2, denoted by pos1 ≻~f pos2
which is defined by fi(pos1) ≥ fi(pos2) for all i (if our goal is

to maximize all functions in ~f ). The subset PF of all possible

solutions Sol to a multi-objective optimization problem where

for each x1 ∈ PF we have that there is no x2 ∈ Sol, x1 6= x2,

such that x2 dominates x1 is the so-called Pareto-front of the

particular instance of the problem.

In this work, we use a variant of PSO that considers

dominance among goal functions by extending the definition

of a particle to a triple pi = (posi,vi,Ownbesti). The set

Ownbesti records all previous positions of pi that are not

dominated by any of the other previous positions of pi. Instead



of just one solution, Best, for the whole particle swarm,

we replace Best in Equation (1) with a value selected from

the sets Ownbest(i−1) mod l and Ownbest(i+1) mod l of non-

dominated solutions of the “neighbours” of particle pi. The

selection is done randomly every time Equation (1) is applied,

as is the selection of an element from Ownbesti to play the

role of besti in Equation (1). After the new position of pi
is created, it is checked for domination by an element of

Ownbesti. If it is not, it is added to Ownbesti and all elements

in Ownbesti that are dominated by posnewi are removed from

it. Again, the search terminates when it reaches a maximum

number of iterations, or the union of all Ownbestis fulfills

certain conditions.

III. TESTING OF HARBOUR SECURITY POLICIES

This section describes how we combine the testing concept

described in Section II-A with PSO in Section II-B to test

deployment policies for agents in a harbour surveillance and

security system.

A. Harbour simulations for security policies

Harbours are an important part of a country’s infrastructure

that need to be protected. Part of this protection is having

harbour defenders detect and intercept suspicious vessels. Due

to resource limitations, these defenders need to be well guided

and coordinated, which is usually achieved by creating a good

policy for them. One aspect of a good policy is to stop attacks

before they reach their goals. This requires that defenders

detect any possible threat to installations or ships, investigate

a possible threat, and if the threat is real, neutralize the threat.

Using our notations from Section II-A, the defender vessels

are the policy agents, Apol. The essential features of these

agents needed for simulation are their sensor capabilities and

movement capabilities. Legitimate users of a harbour form

Aother and the test agents, Atest are the attackers. We say that

an attack has succeeded when a test agent reaches a defined

position in the harbour without being intercepted.

The environment, Env, at the centre of our simulation

system uses Geographic Information System (GIS) technol-

ogy [6]) enhanced to simulate movement and sensor-based

perception of all agents. The necessary geographical data for

the GIS for our experiments came from the Government of

Canada’s National Topographic Data Base which is available

from GeoGratis [7]. Given our application where the agents are

often constantly moving, we had to decide on how to update

the positions of the agents in the GIS. In our experiments, the

movement of all agents is computed in frames of 0.1s using

Euler integration on forces acting on the vessel. These forces

are boat drag, throttle and the rudder positions as provided by

the vessel. This means that all of these updates are available

as environment states to the learner.

B. Using PSO to test harbour security policies

To apply our testing scheme from Section II-A to test

harbour security policies, we need an agent architecture for

the agents in Atest and a machine learner that can learn

Fig. 2. Contents of a particle position in our swarm optimization learning
system plotted on a caricature nautical chart (yellow is land, blue is shallow
water), and white is deep water. A particle is a set of waypoints and speeds
for n agents (here n = 3, speeds shown only for the first agent). The actual
path between waypoints is found by the method in [8]. When a waypoint
falls on land (as seen on the island on the right), the simulation moves the
waypoint to the nearest point of water.

their behaviors. The set of actions available to the test agents

is limited to moving around the harbour at variable speeds.

Variation in speed is necessary for attacks to exploit timing.

Therefore, the test agent architecture works as follows.

• We use a small number of high-level waypoint-speed

pairs, ((x, y), speed), to define the trajectory of an at-

tacker. This reduces the dimensionality of the search

space.

• Obstacles such as land or hazards to navigation may

obstruct a straight path between waypoints, so the agents

use a path planner (we used [8]) to establish low level

waypoints on a short, safe path between high-level way-

points.

• Speed is a normalized throttle setting in the range

[0.1 . . .1].
• Waypoints that fall on land are moved to the nearest

navigable position on the water.

So for a harbour attacker, a PSO particle position is a sequence

of waypoints with speeds for each agent, given by

(((x1,1, y1,1, speed1,1), . . . , (x1,l1 , y1,l1 , speed1,l1)), . . . ,
((xn,1, yn,1, speedn,1), . . . , (xn,ln , yn,ln , speedn,ln))),

as illustrated in Figure 2. The learner evaluates a particle with

the observations obtained from a simulation run in which

attackers use the waypoints and speeds defined within the



particle position. In our current version, Aother is the empty

set and we are also not creating any events, so that there is

no Agevents.

There are several measures that the learner takes from each

particle position’s simulation run in order to compare particle

positions. Since this is at the centre of our goal ordering

structures we will look more closely at this part of our PSO

in the next section.

Since our particles are vectors of numbers, they can be

updated as described in Section II-B. The initial positions

for our particles are created using random values between 0.1

and 1 for all speeds needed and while each waypoint is also

randomly chosen, we limited the randomness by requiring that

each waypoint is less than 600m away from its predecessor

in the waypoint sequence for an attack agent. The agents in

Atest start outside the harbour at given coordinates that are the

same in each simulation run. The simulation run for a particle

position ends when

• the attack objective is fulfilled (i.e., an attacker has

reached the target position),

• all attackers have been intercepted (i.e., the Apol agents

were successful), or

• all attackers are at the end of their waypoint sequences.

IV. GOAL ORDERING STRUCTURES FOR BREAKING

HARBOUR SECURITY POLICIES

There are many possible things to measure in a simulation

run of a particle position as described in the last subsection.

Naturally, a particle position that results in one attacker

reaching its target reveals a weakness and fulfills the goal of

the learning process. But such a goal function is all-or-nothing

- if the target is not met, it gives no indication of where to

search for better solutions. As such, we need other knowledge

about the characteristics of good attacks to steer the search.

This knowledge comes in the form of additional goal

functions based on measurements from simulation runs that

indicate how near the behaviors of the agents come to achiev-

ing their goal, or in the case of PSO, we need to compare two

positions to determine which is closer to achieving the goal.

There are many possible, reasonable goal functions but none

alone catches the whole picture, and just summing up various

measures (even a weighted sum) runs into the problem that

some measures are contradicting each other (see below).

To deal with these problems, [3] introduced the concept of

a goal ordering structure that creates a hierarchy of goal func-

tions. Each hierarchy level represents a set of measures that

are treated like the objectives of a multi-objective optimization,

and the different levels then represent a lexicographic combi-

nation of orderings. Our contribution in this paper is to move

beyond the single example of a goal ordering structure in [3]

to include more knowledge in the goal ordering structure to

steer the PSO and thereby improve the effectiveness of testing.

A. Goal Ordering Structures

Formally, the idea of a goal ordering structure ,�, is as

follows. For two particle positions, pos1 and pos2, a goal

ordering structure has the form

({f11, ..., f1q1}, . . . , {fu1, ..., fuqu}),

(or (~f1, . . . , ~fu) for short), where fij is a goal function that

assigns a measure to a particle position by evaluating the

observations, e0, . . . , es that result from simulation of the

waypoints and speeds in that position. If � denotes this

ordering structure, then we have

pos1 � pos2,

if

pos1 ≻ ~f1
pos2, or

pos1 = ~f1
pos2 and pos1 ≻ ~f2

pos2, or . . . or

pos1 = ~f1,..., ~fu−1

pos2 and pos1 ≻ ~fu
pos2.

In this context, pos1 =~fi
pos2 means that pos1 and pos2

have an identical value in each of the measures in ~fi, and

= ~f1,..., ~fi
means = ~f1

and = ~f2
and ... and =~fi

. As such, �

represents a lexicographical combination of multi-objective

domination orderings, which due to the partiality of the

domination orderings, is itself a partial ordering. Consequently,

it is possible that two positions might not be comparable, and

we must use a multi-objective version of PSO, even though

we have a single ultimate goal.

B. Goal functions for harbour security

Proper selection of goal functions within a goal ordering

structure encapsulates knowledge and intuition about an appli-

cation domain to steer PSO. The following five measures en-

capsulate our knowledge and intuition of harbour surveillance

and security. Let e = (e0, . . . , es) be a trace of measurements

obtained from the simulation of a particle position pos.

1) Interception: The intercept measure considers the num-

ber of attackers that are intercepted by the defenders (fewer

interceptions is better):

fintercept(e, pos) =















0, if there is a j, such

that all Agtest,i
are intercepted in ej

1, else

with pos1 ≻intercept pos2, if

fintercept(e, pos1) > fintercept(e, pos2).

2) Success: The success measure evaluates weather or not

the attack was successful:

fsuccess(e, pos) =















1, if there are j, i, such

that Agtest,i reached

the target spot in ej
0, else

with pos1 ≻success pos2, if

fsuccess(e, pos1) > fsuccess(e, pos2).



3) Distance to target: The dist measure indicates how near

an attacker came to the target, at any time:

fdist,i(e, pos) =

⌊s/100⌋
∑

j=1

dist(e100j ,Agtest,i) (3)

+ dist(es),Agtest,i)

where dist(e,Agtest,i) is the length of the shortest path

created from the position of Agtest,i in e to the target (again

computed using path finding). The factor of 100 in Equa-

tion (3) corresponds to 10s for a 0.1s measurement sample

period in the simulation. We define pos1 ≻dist,i pos2, if

fdist,i(e, pos1) < fdist,i(e, pos2).

4) Avoid defenders: The hide measure reflects the idea that

attack agents should avoid the patrolling agents, and therefore

measures the distance of a particular attacker to the defenders,

at any time:

fhide,i(e, pos) =

⌊s/100⌋
∑

j=1

ndist(e100j ,Agtest,i) (4)

+ ndist(es,Agtest,i),

where ndist(e,Agtest,i) is the shortest distance between

Agtest,i and any of the vessels in Apol in e. The factor of 100

in Equation (4) corresponds to 10s for a 0.1s measurement

sample period in the simulation. We define pos1 ≻hide,i pos2,

if

fhide,i(e, pos1) > fhide,i(e, pos2).

5) Group avoidance of defenders: The hidesum measure is

a summation of the individual hide measures over all attackers,

and as such indicates how the attackers as a group are avoiding

defenders:

fhidesum(e, pos) =

n
∑

i=1

fhide,i(e, pos),

where pos1 ≻hidesum pos2, if

fhidesum(e, pos1) > fhidesum(e, pos2).

C. Assembling goal ordering structures

We now look at the task of assembling a goal ordering

structure from a collection of goal functions. As a starting

point, consider the goal ordering structure used in [3], �base,

given by:

({fintercept}, {fdist,1, ..., fdist,n}, {fsuccess}).

But with more knowledge and intuition (in the form of goal

functions) where do we insert additional goal functions to

help the search? Here, helping can mean accelerating learning

(finding more successful attacks in a shorter time), or finding

attacks that might not otherwise be found without the addi-

tional knowledge.

If we look at �base, then placing the hide and hidesum

measures before or with the intercept component or after or

with the success component does not make a lot of sense

– the former leads to attackers staying out of the harbour

and the latter has no net effect. The remaining options are:

before the dist component, in the dist component, or after the

dist component. Putting them into the dist component leads to

contradicting measures – simultaneously approaching the tar-

get while staying away from defenders. Therefore we consider

the following new goal ordering structures. �hidebefore is

({fintercept}, {fhide,1, ..., fhide,n}, {fdist,1, ..., fdist,n},
{fsuccess}),

and �hideafter is

({fintercept}, {fdist,1, ..., fdist,n}, {fhide,1, ..., fhide,n},
{fsuccess}).

Similarly, �hsumbefore is

({fintercept}, {fhidesum}, {fdist,1, ..., fdist,n}, {fsuccess}),

and �hsumafter is

({fintercept}, {fdist,1, ..., fdist,n}, {fhidesum}, {fsuccess}).

It is our expectation that the ordering structures where

we put the new measures before the dist component will

not be successful, since they will allow the learner to keep

generating attack strategies where the attackers stay away from

the harbour. In contrast, we expect the ordering structures

where the new measures are behind the dist component will

improve upon �base.

V. EXPERIMENTAL EVALUATION

In order to present our experimental evaluation of the

different goal ordering structures, we first describe the different

policies and harbours that we use in our evaluation and

the general set-up of the simulation and testing systems.

Then we present and comment on the quantitative data from

our experiments to verify our expectations for the different

ordering structures. Finally, we take a closer look at some of

the attack strategies our testing system finds with the different

ordering structures.

A. Experimental set-up

In our experiments, we use the two harbour patrol and in-

terception policies from [3]. They are both high-level policies

suitable for any harbour and any target location.

The first policy, pat-int, divides the agents in Apol into two

subtypes: namely patrollers and interceptors. The patrollers

detect potential attackers and alert the interceptors. In turn,

the interceptors approach the intruder, identify it and, if

necessary, destroy it. Upon detection, the patroller provides

the interceptor with the course of the potential intruder as long

as it is in its sensor range. If an intruder comes close enough

to a patroller to be identified, then the patroller will destroy

it, otherwise patrollers stay to a predetermined patrol circuit.

The interceptors wait at predefined positions in the harbour

and only become active when alerted by a patroller. When

active, an interceptor determines the best course to approach

an intruder, based on the information from the patroller. If the



interceptor fails to find an intruder at the expected position

then the interceptor returns to its waiting position.

Our second policy, all−pat, does not partition the agents in

Apol. All patrollers follow a circuit around the harbour and the

available vessels are evenly spaced on this circuit. If a patroller

detects a potential intruder, the available agent closest to the

intruder is sent to identify the boat and if this identification

results in the need to intercept, then this agent will intercept

the intruder.

In our simulation system, we have two possible environ-

ments: Esquimalt harbour on Vancouver Island in Western

Canada, and Halifax harbour in Eastern Canada. The in-

stantiations of the general policies were hand-coded by us

and communication between the agents in Apol was achieved

using the GIS. This means that there were no communication

failures possible. For pat − int and Esquimalt this meant

having two patrollers and two interceptors. One patroller

circles the mouth of the harbour, while the second patroller,

the “goaltender”, does a small circle very close to the target.

The two interceptors have their idle positions near the dock

adjacent to the target spot. The target is placed deep inside

the harbour behind a pier. Policy pat − int for Halifax also

uses two patrollers and two interceptors, with the same idea

for the patrollers, i.e., one circling the mouth of the harbour

and one doing its patrol route relatively near to the target. For

policy all− pat in Esquimalt we used four patrollers circling

inside the harbour. We also used four patrollers for the Halifax

scenarios. In all scenarios, the sensor perception by an Agpol,i
was modelled as a circular region about the agent with a radius

of 300 meters, within which the agent has perfect sensing.

To determine whether an agent is a threat or not, an Agpol,i
needs to get within 20 meters of this agent. Note that this

is a simplification of typical physical sensors that favours the

defenders – a more realistic sensor model would be easier for

the attackers.

The two policies and their instantiations for the two har-

bours have weaknesses, even if we limit the number of agents

in Atest. The limited experiments in [3] showed weaknesses

with regard to being able to sneak by all agents in Apol for

both policies and with regard to using some of the agents in

Atest as decoys, drawing the defenders out of position thereby

giving another attacker free access to the target. We consider

attacks where the defenders fail to detect any of the intruders

to be the most dangerous weakness (other attacks are easily

ameliorated). Therefore, part of our goal in looking at new

ordering structures is to find more successful strategies that

avoid detection.

In our experiments, we set the parameters of our testing

system as follows: the PSO parameters are W = 0.8, C1 =

0.2, and C2 = 0.4. The number of waypoints for an Agtest,i
in an attack strategy is 10 and we use 20 particles. We have a

maximum of 100 position updates per particle and every entry

in Table I is based on performing at least 100 iterations of the

testing system (due to the random factors involved in the PSO,

repeating trials, without special measures, results in different

outcomes). Due to the heterogeneity in the machines used for

doing the experiments we use the average number of particle

updates (generation) as speed measure.

B. Quantitative analysis

Table I reports our quantitative results. For the success rates

of our system, if we look at �base, we see that the all− pat

policy for Esquimalt presented more of a challenge for our

testing system than the other scenarios, but still, nearly half of

the testing runs were successful, so that the basic goal ordering

structure is already good at helping to reveal weaknesses in

the policies. But the ordering structures that put the new

measure in a level after the distance-to-target measures were

able to improve the success rates in half of the scenarios,

with the highlight being an improvement of more than 10

percent for �hideafter for the two agent attack of the all−pat

policy for Halifax. For the scenarios with no improvements,

the success rates were only slightly worse, and the average

number of particle updates to find a weakness was usually

less than for �base. The worst difference in success rate was

3%. As expected, having either of the new measures before

the distance-to-target measures was not successful, although

we were surprised that there were so many successful runs

and that those successful runs usually needed fewer particle

updates than the other ordering structures. We will look

into this in more detail in the next subsection. The average

number of particle updates until a successful attack, found

by averaging over successful runs of the testing system, in

general favours �hideafter and �hsumafter over �base. So,

with regard to putting the new measure after the distance-to-

target level, we conclude that there are some improvements.

With regard to combining the measures of the individual

agents or having them represented individually, our initial

expectation was that the fhidesum-measure would perform

clearly better than using the fhide,i-measures in a multi-

objective fashion. Our rationale was that while fhidesum
allows for tradeoffs, (e.g., one agents gets nearer to an Agpol,i
near the target, but another agents gets farther away from all

agents in Apol), the not-dominated requirement for the fhide,i-

measures would not allow for tradeoffs. Instead many particle

positions where one attacker gets nearer to an Agpol,i near the

target would be dominated by positions where this particular

attacker stays farther away. As the table shows, with regard to

success rate, the fhidesum-variant is better than the associated

fhide,i-variant in nine of 16 cases, versus fhide,i is better

six times (with 1 tie). If we look at the average generation

of success, in 10 cases fhidesum is faster than fhide,i, with

five cases the other way around (again with 1 tie). As we

will demonstrate in the next subsection, the reason for this is

that we can also achieve some tradeoffs when using fhide,i
(although it depends on what initial positions are created for

the particles), which explains the unexpected performance of

the fhide,is.

C. Selected attack strategies

Due to lack of space, we cannot provide detailed infor-

mation on individual runs of our testing system using the



success rates (in percent) average successful generation

Harbour: Esquimalt Halifax Esquimalt Halifax

Policy: pat− int all − pat pat − int all − pat pat− int all − pat pat− int all − pat

Agent numbers: 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3

�base 67.3 74.5 46.6 57.1 77.2 84.2 68.1 92.1 17.2 16.2 16.6 15.6 23.2 21.0 18.4 16.5

�hideafter 64.0 75.5 45.7 57.7 75.5 89.6 79.5 85.4 15.8 17.5 15.9 15.1 23.7 20.7 18.2 16.4

�hsumafter 67.3 77.6 45.7 58.2 73.3 88.4 75.5 88.5 16.9 16.4 14.9 14.2 22.8 19.6 18.2 16.8

�hidebefore 23.6 38.6 13.6 28.6 44.9 68.3 66.7 82.6 13.2 16.9 10.9 14.5 25.5 22.1 19.1 14.6

�hsumbefore 9.6 34.2 15.2 19.7 53.4 68.4 68.8 89.2 18.1 14.5 15.1 11.5 23.5 22.6 15.8 13.9

TABLE I
COMPARISONS BETWEEN GOAL ORDERING STRUCTURES

different goal ordering structures. In particular, we cannot

provide any screenshot sequences demonstrating interesting

observed behaviors in the successful attacks. However, [9] pro-

vides such information. See also http://www.cpsc.ucalgary.ca/-

∼denzinge/papers/Movies/harbour/overview.html. In the fol-

lowing, we report on generally observed trends.

If we look at the differences between the attack strategies

that the different ordering structures produced in our testing

system for the same problem scenario, we see that the par-

ticular ordering structure clearly influences the “ideas” behind

the attacks. While the ordering structures that put the new

measures after the distance-to-target measures essentially use

one attacker in a timed attack, and have the other attacker

stay outside of the harbour near its starting point, the ordering

structures that give priority to staying away from detection

send one attacker far away from the harbour to counterbalance

the need for the other attacker to come near the defenders

in order to achieve the ultimate goal. In order for such a

behavior to evolve, it is important to have among the initial

positions a representation of this general pattern (i.e., one

attacker has entered the harbour and has come near to the

defenders while the other attacker counters this) that is not

dominated by other positions, which explains the relatively

low success rates. However, since such a pattern is also not

uncommon, and therefore likely to occur in randomly created

particle positions, it also explains why we have success from

time to time.

Another surprising result from our result tables was that

there was not much difference between the fhidesum- and

fhide,i-variants of our goal ordering structure. fhidesum allows

for counterbalancing between the attackers, but we did not

think that using fhide,i would. But our testing system found

a way for this, namely having the attacker that will later be

the successful one doing what we call “accumulating hiding

credit”. This can be in form of a little bit of a loop or zig-zag

in approaching the harbour creating more environment states

where it stays far away from defenders before getting near

them (which is done rather directly and quickly).

All the attack behaviors we looked at show clearly how

much influence the goal ordering structure has on what attack

strategies will be developed and that it is not so easy to predict

exactly what the outcome of the learning will be, at least with

regard to details. But they also show that the basic learning

method is rather robust, able to overcome “unuseful” advice by

a goal ordering structure, which is very important for all kinds

of testing. Also, the found strategies are not exactly along the

lines a human would test - we are going beyond what human

testing can do.

There were also a few test runs that produced solutions that

highlight features of our testing approach and that revealed

some unexpected problems in our implementation of the

defenders. In one of these, an attacker has a waypoint that

is just shy of the shoreline, and since it was travelling at full

throttle, it was not able to turn fast enough to avoid collision

with the land. Despite this, the other attacker is still able to

find the right timing to slip between two patrollers to reach

the target area. The crash is the interesting part of this attack

strategy, because it shows that our learner naturally is not

aware of the laws of physics and consequently the simulator

needs to uphold them. Usually, crashing attackers is not good,

so that just based on the feedback the learner will avoid such

strategies, but if there is still success possible, it does not care.

While we do not have other types of defenders (or emergency

personnel and emergency policies) in our simulation, creating

an emergency would be a good way to draw attention away

from the real attack and our learner obviously can do so

(without even knowing what emergencies are).

In another successful test run, one interceptor collides with

a patroller (since we forgot to implement collision avoidance

between the defenders) and while the general policy allowed

for dealing with this (by having the other interceptor taking on

the role of a patroller), due to this an attacker can make it to

the target without being intercepted, even though it is spotted

by the interceptor turned patroller now following patroller

behavior. Our goal ordering structures clearly were not aiming

at testing our policies for errors like this one, but it was

nevertheless detected (although not in many of our testing

runs, obviously). But we consider this as a good example of

the abilities of our approach and especially of the learner that

was able to take advantage of the implementation problem to

fulfill its ultimate goal.

VI. RELATED WORK

The use of search methods to test systems has, over the last

years, seen growing popularity. [10] provides an overview of

this area and SEBASE [11] is a large, although incomplete,



collection of papers around search-based Software Engineer-

ing, including a lot of papers on testing. Unfortunately, the

question how to compare solutions has not seen a lot of

attention, despite the fact that it is very important to guide

the search for finding unwanted policy behavior (which also

has not drawn a lot of attention in this area, with the exception

of [12] and [13]).

There have been some works on creating fitness func-

tions for evolutionary algorithms, although most looked at

improving the behavior of the algorithms in general (e.g., [14]

tried to keep the solutions diverse). A notable exception

is [15], that looked into features of different environments for

evolving wanted behaviors, but which still had to combine

those features into a single measure.

Widening the comparison to any works in literature, our

work, at first glance, seems to contradict the observations

by [16], which is the only paper that has suggested the use

of learning to create wanted behaviors within multi-agent

simulations we were able to find. The main point in their

observations was a brittleness in the learning results, whereas

our experiments showed a robustness of our approach. But [16]

looked at learning a policy, which has to deal with many

possible “attacks” and therefore is a much more complex task

than our learning of attacks.

VII. CONCLUSION AND FUTURE WORK

We investigated different goal ordering structures for PSO-

based learning of cooperative behaviors for testing harbour

security policies using multi-agent simulations. By learning

sequences of high-level waypoints in a spatial simulation

for a group of test agents and adding low-level waypoints

using a conventional path planner to create physically possible

behaviors for these test agents, our method tries to get policy

agents that implement the tested policies to show an unwanted

behavior that reveals a weakness in the tested policy. Goal

ordering structures are used to guide the learning and allow for

a rather explicit representation for measurements of interesting

aspects of runs of the underlying simulation system. This

provides a user of such an automated policy testing system

with a high-level way to guide the system.

Our experiments with testing harbour security policies

showed that goal ordering structures indeed allow a good

guidance of the learning, mostly achieving the predicted

effects, but also that there is still potential for surprises

(although most of them were positive). The experiments also

provided a few positive side effects, like revealing an error

in our implementation of the policies. Also, many of the

learned behaviors that revealed weaknesses are rather unusual

compared to obvious test cases that humans would create,

so that the automated test system represents at least a good

additional testing tool.

Our future work will look into applying our method to

other application areas that use spatial simulations. Also,

extensions of our current system, like adding other harbour

users (we are currently collecting data from the harbours to

be able to model some of these users), weather events or more

sophisticated sensor models, and how these extensions have to

be incorporated in the testing problem are part of our future

plans.
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