HUBS, SWITCHES AND BRIDGES

```
CPSC 441 TUTORIAL - MARCH 21, 2012
    TA: RUITING ZHOU
```

Parts of the slides contents are courtesy of the following people:
Jim Kurose, Keith Ross:
Yishay Mansour: http://www.cs.tau.ac.il/~mansour/networking-course/lcc3.ppt

LAN INTERCONNECTION

- We need to break down big networks to sub-LANs
- Limited amount of supportable traffic: on single LAN, all stations must share bandwidth
- Limited length: 802.3 (Ethernet) specifies maximum cable length. For 10 Mbps:
- Maximum length of the wire: 2,500 meter
- Large "collision domain" (can collide with many stations)

HUBS

- Physical Layer devices
- Essentially repeaters operating at bit levels: repeat received bits on one interface to all other interfaces
- Hubs can be arranged in a hierarchy (or multi-tier design), with backbone hub at its top
- Each connected LAN referred to as LAN segment

HUBS: PROS

- Hub Advantages:
- simple, inexpensive device
- Multi-tier provides graceful degradation: portions of the LAN continue to operate if one hub malfunctions
- extends maximum distance between node pairs (100m per Hub)
- limitations : Hubs do not isolate collision domains: node may collide with any node residing at any segment in LAN
- Single collision domain results in no increase in max throughput
- multi-tier throughput same as single segment throughput
- Individual LAN restrictions pose limits on number of nodes in same collision domain and on total allowed geographical coverage
- cannot connect different Ethernet types (e.g., 10BaseT and 100baseT) Why?

BRIDGES

- Link-layer devices:
- store, forward Ethernet frames
- examine incoming frame's MAC address, selectively forward frame based on its destination. When frame is to be forwarded on segment, bridge uses CSMA/CD to access segment and transmit
- Advantages:
- Isolates collision domains resulting in higher total max throughput, and does not limit the number of nodes nor geographical coverage
- Can connect different type Ethernet since it is a store and forward device
- Transparent: no need for any change to hosts LAN adapters

SWITCHES

- A switch could be considered a bridge with numerous ports. A bridge only has one incoming and one outgoing port.
- Switch or Layer 2 switch is often used interchangeably with bridge
- Plug-and-play, self-learning
- switches do not need to be configured

SWITCH: ALLOWS MULTIPLE SIMULTANEOUS TRANSMISSIONS

- hosts have dedicated, direct connection to switch
- switches buffer packets
- Ethernet protocol used on each incoming link, but no collisions; full duplex
- each link is its own collision domain
- switching: A-to-A' and B-toB' simultaneously, without collisions
- not possible with dumb hub

switch with six interfaces (1,2,3,4,5,6)

SWITCH TABLE

- Q: how does switch know that A^{\prime} reachable via interface 4, B' reachable via interface 5 ?
- A: each switch has a switch table, each entry:
- (MAC address of host, interface to reach host, time stamp)
- looks like a routing table!
- Q: how are entries created, maintained in switch table?
- something like a routing protocol?

switch with six interfaces
(1,2,3,4,5,6)

SWITCH: SELF-LEARNING

- switch learns which hosts can be reached through which interfaces
- when frame received, switch "learns" location of sender: incoming LAN segment
- records sender/location pair in switch table

MAC addr	interface	TTL
A	1	60

SWITCH: FRAME FILTERING/FORWARDING

When frame received:

1. record link associated with sending host
2. index switch table using MAC dest address
3. if entry found for destination then \{
if dest on segment from which frame arrived then drop the frame else forward the frame on interface indicated \} else flood

SELF-LEARNING, FORWARDING:

 EXAMPLE $\quad / \begin{aligned} & \text { Source: A } \\ & \text { Dest: } A^{\prime}\end{aligned}$- frame destination unknown: flood
- destination A location known: selective send

MAC addr	interface	TTL
A	1	60
A $^{\prime}$	4	60

Switch table
(initially empty)

INTERCONNECTING SWITCHES

- switches can be connected together

\square Q: sending from A to F - how does S_{1} know to forward frame destined to F via S_{4} and S_{2} ?
\square A: self learning! (works exactly the same as in single-switch case!)

WHAT WILL HAPPEN WITH LOOPS?

- Incorrect learning

SPANNING TREES

- Allow a path between every LAN without causing loops (loopfree environment)
- Bridges communicate with special configuration messages (BPDUs- Bridge Protocol Data Units)
- Standardized by IEEE 802.1D
- Requirements:
- Each bridge is assigned a unique identifier
- A broadcast address for bridges on a LAN
- A unique port identifier for all ports on all bridges
- MAC address
- Bridge id + port number

EXAMPLE SPANNING TREE

SPANNING TREE ALGORITHM: OVERVIEW

1. Determine the root bridge among all bridges
2. Each bridge determines its root port

- The port in the direction of the root bridge

3. Determine the designated bridge on each LAN

- The bridge which accepts frames to forward towards the root bridge
- The frames are sent on the root port of the designated bridge

EXAMPLE SPANNING TREE

EXAMPLE SPANNING TREE

SPANNING TREE ALGORITHM: SELECTING ROOT BRIDGE

- Initially, each bridge considers itself to be the root bridge
- Bridges send BDPU frames to its attached LANs
- The bridge and port ID of the sending bridge
- The bridge and port ID of the bridge--- the sending bridge considers the one is the root
- The root path cost for the sending bridge
- Best one wins
- (lowest root ID/cost/priority)

SPANNING TREE ALGORITHM: SELECTING ROOT PORTS

- Each bridge selects one of its ports which has the minimal cost to the root bridge
- When multiple paths from a bridge are least-cost paths, the chosen path uses the neighbor bridge with the lower bridge ID. The root port is thus the one connecting to the bridge with the lowest bridge ID.
- In case of another tie, two bridges are connected by multiple cables. In this case, the lowest port ID is used

SELECT DESIGNATED BRIDGES FORWARDING/BLOCKING STATE

- Same as selecting the root bridge:
- Initially, each bridge considers itself to be the designated bridge, send BDPU frames to attached LANs, best one wins!
- Root and designated bridges will forward frames to and from their attached LANs
- All other ports are in the blocking state

SPANNING TREE PROTOCOL: EXECUTION

SWITCHES VS. ROUTERS

- both store-and-forward devices
- routers: network layer devices (examine network layer headers)
- switches are link layer devices
- routers maintain routing tables, implement routing algorithms
- switches maintain switch tables, implement filtering, learning algorithms

