
C P S C 4 4 1 T U T O R I A L – J A N U A R Y 1 8 , 2 0 1 2

T A : R u i t i n g Z h o u

INTRODUCTION TO SOCKET
PROGRAMMING WITH C

WHAT IS A SOCKET?

• Socket is an interface between application and
network (the lower levels of the protocol stack)
• The application creates a socket

• The socket type dictates the style of communication

• reliable vs. best effort

• connection-oriented vs. connectionless

2 From: http://www.cs.columbia.edu/~danr/courses/6761/Summer03/intro/6761-1b-sockets.ppt

• electric outlet that one
can plug into for network
services

WHAT IS A SOCKET?

• A host-local, application-created, OS-
controlled interface (a “door”) into application pro
cess

• Once a socket is setup the application can

• pass data to the socket for network transmission

• receive data from the socket (transmitted through the
network, received from some other host)

3

MOST POPULAR TYPES OF SOCKETS

• TCP socket

• Type: SOCK_STREAM

• reliable delivery

• in-order guaranteed

• connection-oriented

• bidirectional

We focus on TCP

• UDP socket

• Type: SOCK_DGRAM

• unreliable delivery

• no order guarantees

• no notion of “connection” –

app indicates destination

for each packet

• can send or receive

SERVER AND CLIENTS

5

SOCKET CREATION IN C

• int s = socket(domain, type, protocol);
• s: socket descriptor, an integer (like a file-handle)

• domain: integer, communication domain

• e.g., AF_INET (IPv4 protocol) – typically used

• type: communication type

• SOCK_STREAM: reliable, 2-way, connection-based service

• SOCK_DGRAM: unreliable, connectionless,

• other values: need root permission, rarely used, or obsolete

• protocol: specifies protocol (see file /etc/protocols for a list of
options) - usually set to 0, 0 is for IP

NOTE: socket call does not specify where data will be coming

from, nor where it will be going to - it just creates the interface.

6 From: http://www.cs.columbia.edu/~danr/courses/6761/Summer03/intro/6761-1b-sockets.ppt

PORTS

7

• Each host machine has
an IP address (or more!)

• Each host has 65,536
ports (2?)

• Some ports are reserved
for specific apps
• 20,21: FTP

• 23: Telnet

• 80: HTTP

• see RFC 1700 (about 2000
ports are reserved)

Port 0

Port 1

Port 65535

A socket provides an
interface to send data
to/from the network through
a port

From: http://www.cs.columbia.edu/~danr/courses/6761/Summer03/intro/6761-1b-sockets.ppt

ADDRESSES, PORTS AND SOCKETS

• Like apartments and mailboxes

• You are the application

• Your apartment building address is the address

• Your mailbox is the port

• The post-office is the network

• The socket is the key that gives you access to the right

mailbox (one difference: assume outgoing mail is placed by

you in your mailbox)

• Q: How do you choose which port a socket

connects to?

8 From: http://www.cs.columbia.edu/~danr/courses/6761/Summer03/intro/6761-1b-sockets.ppt

THE BIND FUNCTION

• The bind function associates and (can exclusively)

reserves a port for use by the socket

• int status = bind(sockid (struct sockaddr *) &servaddr,

size);

• status: error status, = -1 if bind failed

• sockid: integer, socket descriptor

• Sockaddr: the structure with the addresses and the ports

• We put local IP address and the Port in servaddr

 servaddr.sin_family = AF_INET; /* IPv4 protocol */

 servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
/*any interface in server*/

 servaddr.sin_port = htons(13);

/*well‐known daytime port*/

 size: the size (in bytes) of the servaddr structure

9

SKIPPING THE BIND

• bind can be skipped, When and why?

• When connecting to another host (i.e., connecting end
is the client and the receiving end is the server), the OS
automatically assigns a free port for the outgoing
connection.

• During connection setup, receiving end is informed of
port)

• You can however bind to a specific port if need be.

10

CONNECTION SETUP

• A connection occurs between two ends

• Server: waits for an active participant to request connection

• Client: initiates connection request to passive side

• Once connection is established, server and client

ends are “similar”

• both can send & receive data

• either can terminate the connection

11

SERVER AND CLIENTS

12

CONNECTION SETUP STEPS

• Server end:
• step 1: listen (for

incoming requests)

• step 3: accept (a request)

• step 4: send/recv

• The accepted
connection is on a new
socket

• The old socket
continues to listen for
other active
participants

• Client end:

• step 2: request &
establish connection

• step 4: send/recv

13

Server

 l-sock a-sock-1 a-sock-2

Client1

socket

Client2

socket

From: http://www.cs.columbia.edu/~danr/courses/6761/Summer03/intro/6761-1b-sockets.ppt

SERVER SOCKET: LISTEN & ACCEPT

Called on server side:

•int status = listen(sock, queuelen);
• status: 0 if listening, -1 if error

• sock: integer, socket descriptor

• queuelen: integer, # of active participants that can “wait”
for a connection

• listen is non-blocking: returns immediately

•int s = accept(sock, (struct sockaddr *) NULL, NULL);
• s: integer, the new socket (used for data-transfer)

• sock: integer, the orig. socket (being listened on)

• struct sockaddr, address of the active participant

• If so, accept() returns a NEW SOCKET DESCRIPTOR ! Why ? B
ecause the old socket descriptor (sock) is still queuing requ
est from the network !

• accept is blocking: waits for connection before returning

14 From: http://www.cs.columbia.edu/~danr/courses/6761/Summer03/intro/6761-1b-sockets.ppt

CONNECT

• int status = connect(sock, (sockaddr

*) &servaddr, sizeof(servaddr));

• status: 0 if successful connect, -1 otherwise

• sock: integer, socket to be used in connection

• servaddr :address of passive participant

• sizeof(servaddr): integer

• connect is blocking

15 From: http://www.cs.columbia.edu/~danr/courses/6761/Summer03/intro/6761-1b-sockets.ppt

SENDING / RECEIVING DATA

• int count = send(sock, &buf, len, flags);
• count: # bytes transmitted (-1 if error)

• buf: char[], buffer to be transmitted

• len: integer, length of buffer (in bytes) to transmit

• flags: integer, special options, usually just 0

• int count = recv(sock, &buf, len, flags);
• count: # bytes received (-1 if error)

• buf: void[], stores received bytes

• len: # bytes received

• flags: integer, special options, usually just 0

• Calls are blocking [returns only after data is sent
(to socket buf) / received]

16 From: http://www.cs.columbia.edu/~danr/courses/6761/Summer03/intro/6761-1b-sockets.ppt

CLOSE

• When finished using a socket, the socket should be

closed:

• status = close(s);

• status: 0 if successful, -1 if error

• s: the file descriptor (socket being closed)

• Closing a socket

• closes a connection

• frees up the port used by the socket

17 From: http://www.cs.columbia.edu/~danr/courses/6761/Summer03/intro/6761-1b-sockets.ppt

THE STRUCT SOCKADDR

• The Internet-specific:

struct sockaddr_in {
short sin_family;

u_short sin_port;

struct in_addr sin_addr;

char sin_zero[8];

};

• sin_family = AF_INET // Specifies the address family

• sin_port: // Specifies the port #(0-65535)

• sin_addr: // Specifies the IP address

• sin_zero: unused // unused!

18 From: http://www.cs.columbia.edu/~danr/courses/6761/Summer03/intro/6761-1b-sockets.ppt

FAQ 1

• Sometimes, an ungraceful exit from a program (e.g., ctrl-c) does
not properly free up a port

• Eventually (after a few minutes), the port will be freed

• You can kill the process, or

• To reduce the likelihood of this problem, include the following
code:
• In header include:

 #include <signal.h>

 void cleanExit(){exit(0);}

• In socket code:

 signal(SIGTERM, cleanExit);

 signal(SIGINT, cleanExit);

19 From: http://www.cs.columbia.edu/~danr/courses/6761/Summer03/intro/6761-1b-sockets.ppt

FAQ 2

• Make sure to #include the header files that define used

functions

• Check Beej's Guide to Network Programming Using

Internet Sockets
http://beej.us/guide/bgnet/output/html/multipage/index.html

• Search the specification for the function you need to use

for more info, or check the main pages.

20

http://beej.us/guide/bgnet/output/html/multipage/index.html
http://beej.us/guide/bgnet/output/html/multipage/index.html

LETS WRITE SOME CODE!

• Sample socket program:

• Client/server example.

21

REFERENCES

•These are good references for further study of Socket
programming with C:

• Beej's Guide to Network Programming Using Internet Sockets

http://beej.us/guide/bgnet/output/html/multipage/index.html

• http://www.cs.columbia.edu/~danr/courses/6761/Summer03/intro/6761-1b-

sockets.ppt

22

http://beej.us/guide/bgnet/output/html/multipage/index.html
http://beej.us/guide/bgnet/output/html/multipage/index.html
http://www.cs.columbia.edu/~danr/courses/6761/Summer03/intro/6761-1b-sockets.ppt
http://www.cs.columbia.edu/~danr/courses/6761/Summer03/intro/6761-1b-sockets.ppt
http://www.cs.columbia.edu/~danr/courses/6761/Summer03/intro/6761-1b-sockets.ppt
http://www.cs.columbia.edu/~danr/courses/6761/Summer03/intro/6761-1b-sockets.ppt
http://www.cs.columbia.edu/~danr/courses/6761/Summer03/intro/6761-1b-sockets.ppt
http://faculty.ksu.edu.sa/jebari_chaker/papers/C_for_Java_Programmers.pdf

TIPS FOR THE ASSIGNMENT 1

socket()

bind()

listen()

accept()

write()

read()

Proxy

close()

socket()

TCP Client

connect()

write()

read()

close()

Get request

socket()

bind()

listen()

accept()

write()

read()

read()

Web

close()

socket()

connect()

write()

read()

close()

Get

data

modify

