
TCP

(Transmission Control Protocol)

Review

Ruiting Zhou

Department of Computer Science

University of Calgary

Parts of the slide contents are taken from CPSC 641 by Prof. Carey Williamson

Copyright © 2005 Department of Computer Science

CPSC 441 Winter 2012 2

The TCP Protocol
• Connection-oriented, point-to-point protocol:

– Connection establishment and teardown phases

– „Phone-like‟ circuit abstraction (application-layer view)

– One sender, one receiver

– Called a “reliable byte stream” protocol

– General purpose (for any network environment)

• Connection-oriented: the two

applications using TCP must

establish a TCP connection

with each other before they

can exchange data

Copyright © 2005 Department of Computer Science

The TCP Protocol

• TCP provides the following facilities to
– Stream Data Transfer: Transfers a contiguous stream of bytes in TCP

segments

– Multiplexing: allow for many processes within a single host to use TCP

communication facilities simultaneously.

– Reliability

– Flow Control and congestion control

• Originally optimized for certain kinds of transfer:

– Telnet (interactive remote login)

– FTP (long, slow transfers)

– Web is like neither of these!

3 CPSC 441 Winter 2012

Copyright © 2005 Department of Computer Science

CPSC 441 Winter 2012 4

TCP Protocol (cont)

• Provides a reliable, in-order, byte stream abstraction:
– Recover lost packets and detect/drop duplicates

– Detect and drop corrupted packets

– Preserve order in byte stream, no “message boundaries”

– Full-duplex: bi-directional data flow in same connection

• Flow and congestion control:
– Flow control: sender will not overwhelm receiver

– Congestion control: sender will not overwhelm the network

– Sliding window flow control

– Send and receive buffers

– Congestion control done via adaptive flow control window size

socket
layer

TCP
send buffer

application
writes data

TCP
receive buffer

socket
layer

application
reads data

data segment

ACK segment

Copyright © 2005 Department of Computer Science

CPSC 441 Winter 2012 5

The TCP Header

Fields in the header:

• SrcPort and DstPort: These
two fields plus the source and
destination IP addresses, combine
to uniquely identify each TCP

• Sequence number: the byte in
the stream of data from the
sending TCP to the receiving TCP
that the first byte of data in this
segment represents

• Acknowledgement
number: contains the next
sequence number that the sender
expects to receive. This
acknowledges receipt of all prior
bytes. This field is valid only if the
ACK flag is on.

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number

rcvr window size

ptr urgent data checksum

F S R P A U
head
len

not
used

Options (variable length)

Copyright © 2005 Department of Computer Science

The TCP Header

CPSC 441 Winter 2012 6

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number

rcvr window size

ptr urgent data checksum

F S R P A U
head
len

not
used

Options (variable length)

• header length: gives the length of
the header in 32-bit words

• Flags (6 bits):
 URG – this segment contains urgent data.

When this flag is set, the UrgPtr field
indicates where the non-urgent data
contained in this segment begins

 ACK – indicates that the Acknowledgment
field is significant. All packets after the
initial SYN packet sent by the client
should have this flag set.

 PSH – Push function. Asks to push the
buffered data to the receiving application.

 RST– Reset the connection

 SYN – Synchronize sequence numbers.
Only the first packet sent from each end
should have this flag set.

 FIN – No more data from sender

Copyright © 2005 Department of Computer Science

The TCP Header

• Not used: for future use and
should be set to zero

• Receive window: the number of
bytes that the receiver is currently
willing to receive

• Checksum: The 16-
bit checksum field is used for error-
checking of the header and data

• Option field: has many different
options. For example, maximum
segment size option, called the
MSS. It specifies the maximum
sized segment the sender wants to
receive

• The data portion of the TCP
segment is optional.

CPSC 441 Winter 2012 7

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number

rcvr window size

ptr urgent data checksum

F S R P A U
head
len

not
used

Options (variable length)

http://en.wikipedia.org/wiki/Checksum

Copyright © 2005 Department of Computer Science

CPSC 441 Winter 2012 8

Establishing a TCP Connection
• Client sends SYN with

initial sequence number

(ISN = X)

• Server responds with its

own SYN w/seq number

Y and ACK of client ISN

with X+1 (next expected

byte)

• Client ACKs server's ISN

with Y+1

• The „3-way handshake‟

• X, Y randomly chosen

• All modulo 32-bit

arithmetic

client server

connect()
listen()
port 80

accept()

read()

time

Copyright © 2005 Department of Computer Science

CPSC 441 Winter 2012 9

Sending Data

• Sender TCP passes segments to IP to transmit:

– Keeps a copy in buffer at send side in case of loss

– Called a “reliable byte stream” protocol

– Sender must obey receiver advertised window

• Receiver sends acknowledgments (ACKs)

– ACKs can be piggybacked on data going the other way

– Protocol allows receiver to ACK every other packet in

attempt to reduce ACK traffic (delayed ACKs)

– Delay should not be more than 500 ms. (typically 200 ms)

socket
layer

TCP
send buffer

application
writes data

TCP
receive buffer

socket
layer

application
reads data

data segment

ACK segment

Copyright © 2005 Department of Computer Science

Example

Three way handshake
• 1629.884415 192.168.1.9 -> 136.159.5.17 44 TCP 1035 80 133227 : 133227 0 win: 32768 S

• 1629.886713 136.159.5.17 -> 192.168.1.9 44 TCP 80 1035 3310607972 : 3310607972 133228 win: 24820 SA

• 1629.888507 192.168.1.9 -> 136.159.5.17 40 TCP 1035 80 133228 : 133228 3310607973 win: 32768 A

• 73

• Timestamp Src IP Dst IP IP pkt size Protocol SrcPort DstPort Seq num ACK num win size flag

• 1629.948462 192.168.1.9 -> 136.159.5.17 418 TCP 1035 80 133228 : 133606 3310607973 win: 32768 PA

• 1629.952320 136.159.5.17 -> 192.168.1.9 40 TCP 80 1035 3310607973 : 3310607973 133606 win: 24820 A

• 1629.955295 136.159.5.17 -> 192.168.1.9 329 TCP 80 1035 3310607973 : 3310608262 133606 win: 24820 PA

• 1629.959145 136.159.5.17 -> 192.168.1.9 1500 TCP 80 1035 3310608262 : 3310609722 133606 win: 24820 A

• 1629.960963 136.159.5.17 -> 192.168.1.9 1500 TCP 80 1035 3310609722 : 3310611182 133606 win: 24820 PA

• 1629.962090 192.168.1.9 -> 136.159.5.17 40 TCP 1035 80 133606 : 133606 3310609722 win: 31019 A

Data transmission

CPSC 441 Winter 2012 10

Copyright © 2005 Department of Computer Science

CPSC 441 Winter 2012 11

Preventing Congestion
• Sender may not only overrun receiver, but may also

overrun intermediate routers:
– No way to explicitly know router buffer occupancy,

 so we need to infer it from packet losses

– Assumption is that losses stem from congestion, namely,
that intermediate routers have no available buffers

• Sender maintains a congestion window:
– Never have more than CW of un-acknowledged data

outstanding (or RWIN data; min of the two)

– Successive ACKs from receiver cause CW to grow.

• How CW grows based on which of 2 phases:
– Slow-start: initial state.

– Congestion avoidance: steady-state.

– Switch between the two when CW > slow-start threshold

Copyright © 2005 Department of Computer Science

CPSC 441 Winter 2012 12

Congestion Control Principles

• Lack of congestion control would lead to congestion
collapse (Jacobson 88).

• Idea is to be a “good network citizen”.

• Would like to transmit as fast as possible without loss.

• Probe network to find available bandwidth.

• In steady-state: linear increase in CW per RTT.

• After loss event: CW is halved.

• This general approach is called Additive Increase and
Multiplicative Decrease (AIMD).

• Various papers on why AIMD leads to network stability.

Copyright © 2005 Department of Computer Science

CPSC 441 Winter 2012 13

Slow Start

• Initial CW = 1.

• After each ACK, CW += 1;

• Continue until:
– Loss occurs OR

– CW > slow start threshold

• Then switch to congestion
avoidance

• If we detect loss, cut CW in
half

• Exponential increase in
window size per RTT

sender

R
T

T

receiver

time

Copyright © 2005 Department of Computer Science

CPSC 441 Winter 2012 14

Congestion Avoidance

Until (loss) {
 after CW packets ACKed:
 CW += 1;
}
ssthresh = CW/2;
Depending on loss type:
 SACK/Fast Retransmit:
 CW/= 2; continue;
 Course grained timeout:
 CW = 1; go to slow start.

(This is for TCP Reno/SACK: TCP
Tahoe always sets CW=1 after a loss)

Copyright © 2005 Department of Computer Science

CPSC 441 Winter 2012 15

How are losses recovered?

What if packet is lost (data or ACK!)

• Coarse-grained Timeout:
– Sender does not receive ACK

after some period of time

– Event is called a retransmission
time-out (RTO)

– RTO value is based on estimated
round-trip time (RTT)

– RTT is adjusted over time using
exponential weighted moving
average:

 RTT = (1-x)*RTT + (x)*sample

 (x is typically 0.1)

First done in TCP Tahoe

loss

ti
m

e
ou

t

lost ACK scenario

X

sender receiver

time

Copyright © 2005 Department of Computer Science

CPSC 441 Winter 2012 16

Fast Retransmit

• Receiver expects N, gets N+1:
– Immediately sends ACK(N)

– This is called a duplicate ACK

– Does NOT delay ACKs here!

– Continue sending dup ACKs for
each subsequent packet (not N)

• Sender gets 3 duplicate ACKs:
– Infers N is lost and resends

– 3 chosen so out-of-order packets
don‟t trigger Fast Retransmit
accidentally

– Called “fast” since we don‟t need
to wait for a full RTT

sender receiver

time

X

Introduced in TCP Reno

Copyright © 2005 Department of Computer Science

CPSC 441 Winter 2012 17

Connection Termination

• Either side may terminate a

connection. (In fact,

connection can stay half-

closed.) Let's say the server

closes (typical in WWW)

• Server sends FIN with seq

Number (X) (i.e., FIN is a

byte in sequence)

• Client ACK's the FIN with

X+1 ("next expected")

• Client sends it's own FIN

when ready

• Server ACK's client FIN as

well with Y+1.

client server

close()

close()

closed

ti
m

e
d
 w

ai
t time

Copyright © 2005 Department of Computer Science

CPSC 441 Winter 2012 18

The TCP State Machine

• TCP uses a Finite State Machine, kept by each side
of a connection, to keep track of what state a
connection is in.

• State transitions reflect inherent races that can
happen in the network, e.g., two FIN's passing each
other in the network.

• Certain things can go wrong along the way, i.e.,
packets can be dropped or corrupted. In fact,
machine is not perfect; certain problems can arise not
anticipated in the original RFC.

• This is where timers will come in, which we will
discuss more later.

Copyright © 2005 Department of Computer Science

CPSC 441 Winter 2012 19

TCP Connection Establishment

ESTABLISHED

SYN_RCVD

SYN_SENT

CLOSED

LISTEN

client application
calls connect()

send SYN

receive SYN
send SYN + ACK

server application
calls listen()

receive SYN & ACK
send ACK

receive ACK

• CLOSED: more implied than

actual, i.e., no connection

• LISTEN: willing to receive

connections (accept call)

• SYN-SENT: sent a SYN, waiting

for SYN-ACK

• SYN-RECEIVED: received a

SYN, waiting for an ACK of our

SYN

• ESTABLISHED: connection

ready for data transfer

receive SYN
send ACK

Copyright © 2005 Department of Computer Science

CPSC 441 Winter 2012 20

TCP Connection Termination
ESTABLISHED

FIN_WAIT_2

TIME_WAIT

FIN_WAIT_1

LAST_ACK

CLOSE_WAIT

CLOSED

wait 2*MSL
(240 seconds)

receive ACK

receive FIN
send ACK

receive ACK
of FIN

close() called
send FIN

receive FIN
send ACK

• FIN-WAIT-1: we closed first,
waiting for ACK of our FIN
(active close)

• FIN-WAIT-2: we closed first,
other side has ACKED our FIN,
but not yet FIN'ed

• CLOSING: other side closed
before it received our FIN

• TIME-WAIT: we closed, other
side closed, got ACK of our FIN

• CLOSE-WAIT: other side sent
FIN first, not us (passive close)

• LAST-ACK: other side sent FIN,
then we did, now waiting for
ACK

CLOSING

receive FIN
send ACK

receive ACK
of FIN

close() called
send FIN

Copyright © 2005 Department of Computer Science

CPSC 441 Winter 2012 21

Summary: TCP Protocol

• Protocol provides reliability in face of complex
network behavior

• Tries to trade off efficiency with being "good network
citizen“ (i.e., fairness)

• Vast majority of bytes transferred on Internet today
are TCP-based:
– Web

– Email

– News

– Peer-to-peer (Napster, Gnutella, FreeNet, KaZaa)

– Some video streaming applications (YouTube)

