
HyperText Transfer Protocol (HTTP) Review

Carey Williamson

iCORE Chair and Professor

Department of Computer Science

University of Calgary

Slide content courtesy of Erich Nahum (IBM Research), modified by Xifan Zheng,2013,1,22

Copyright © 2005 Department of Computer Science

Today’s tutorial

• Introduction to HTTP

• HTTP request type/format

• HTTP response type/format

• How Web Server works

• Hint for Assignment1

CPSC 441 Winter 2012 2

Copyright © 2005 Department of Computer Science

CPSC 441 Winter 2012 3

Introduction to HTTP

• HTTP: HyperText Transfer Protocol

– Communication protocol between clients and servers

– Application layer protocol for WWW (World Wide Web)

– Deliver virtually all files and other data: HTML files, image files,

query results, or anything else.

– Through TCP/IP sockets

• Client/Server model:

– Client: browser that requests, receives, displays object

– Server: receives requests and responds to them

Laptop w/
Netscape

Server w/ Apache
Desktop w/
Explorer

http request http request

http response http response

Copyright © 2005 Department of Computer Science

Introduction to HTTP

• After delivering the response, the server closes the connection (making

HTTP a stateless protocol)

• Protocol consists of various operations

– Few for HTTP 1.0 (RFC 1945, 1996)

– Many more in HTTP 1.1 (RFC 2616, 1999)

– Faster response, allowing multiple transactions over a single

persistent connection.

– Faster response and great bandwidth savings, by adding cache support.

– Faster response for dynamically-generated pages, by supporting chunked

encoding,

– Efficient use of IP addresses, multiple domains are served from a single IP

address.

CPSC 441 Winter 2012 4

Copyright © 2005 Department of Computer Science

CPSC 441 Winter 2012 5

HTTP Request Generation

• User clicks on something

• Uniform Resource Locator (URL): scheme+URL. a

domain +a port number+ the path of the resource or

the program to be run
– http://www.cnn.com

– http://www.cpsc.ucalgary.ca

– https://www.paymybills.com

– ftp://ftp.kernel.org

• Different URL schemes map to different services

• Hostname: a domain name assigned to a host

computer. host's local name+its parent domain's

name

http://en.wikipedia.org/wiki/Domain_name

Copyright © 2005 Department of Computer Science

HTTP Request Generation

• Hostname is converted from a name to a 32-bit

IP address (DNS lookup, if needed or local hosts

file)

• It is possible for a single host computer to have

several hostnames; Any domain name can also

be a hostname, If have an IP address

• Connection is established to server (TCP)

CPSC 441 Winter 2012 6

Copyright © 2005 Department of Computer Science

CPSC 441 Winter 2012 7

What Happens Next?
• Client downloads HTML document

– Sometimes called “container page”

– Typically in text format (ASCII)

– Contains instructions for rendering

(e.g., background color, frames)

– Links to other pages

• Many have embedded objects:

– Images: GIF, JPG (logos, banner ads)

– Usually automatically retrieved

• I.e., without user involvement

• can control sometimes

 (e.g. browser options, junkbusters)

<html>

<head>

<meta

name=“Author”

content=“Erich Nahum”>

<title> Linux Web

Server Performance

</title>

</head>

<body text=“#00000”>

<img width=31

height=11

src=“ibmlogo.gif”>

<img

src=“images/new.gif>

<h1>Hi There!</h1>

Here’s lots of cool

linux stuff!

Click here

for more!

</body>

</html>

 sample html file

Copyright © 2005 Department of Computer Science

CPSC 441 Winter 2012 8

Web Server Role

• Respond to client requests, typically a browser

– Can be a proxy, which aggregates client requests (e.g., AOL)

– Proxy: It receives requests from clients, and forwards those

requests to the intended servers. commonly used in firewalls,

for LAN-wide caches, or in other situations.

– Could be search engine spider or robot (e.g., Keynote: Web

monitoring service that checks Web applications, notifies you

whenever they become inaccessible, return incorrect data, or respond

slowly to connection requests.)

• May have work to do on client’s behalf:

– Is the client’s cached copy still good?

– Is client authorized to get this document?

Copyright © 2005 Department of Computer Science

Web Server Role

• Hundreds or thousands of simultaneous clients

• Hard to predict how many will show up on some

day, no sense of how their application

infrastructure will handle large increases in

traffic (e.g., “flash crowds”, diurnal cycle, global

presence)

• Many requests are in progress concurrently

CPSC 441 Winter 2012 9

Copyright © 2005 Department of Computer Science

CPSC 441 Winter 2012 10

HTTP Request Format

GET /images/penguin.gif HTTP/1.0

User-Agent: Mozilla/0.9.4 (Linux 2.2.19)

Host: www.kernel.org

Accept: text/html, image/gif, image/jpeg

Accept-Encoding: gzip

Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

Cookie: B=xh203jfsf; Y=3sdkfjej

<cr><lf>

• Messages are in ASCII (human-readable)
• Initial Request Line
• CRLF indicate end of headers,
•Headers may communicate private information

(browser, OS, cookie information, etc.)

Copyright © 2005 Department of Computer Science

HTTP Request Format

• The User-Agent: header identifies the program that's

making the request—Mozilla: Firefox

CPSC 441 Winter 2012 11

GET /images/penguin.gif HTTP/1.0

User-Agent: Mozilla/0.9.4 (Linux 2.2.19)

Host: www.kernel.org

Accept: text/html, image/gif, image/jpeg

Accept-Encoding: gzip

Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

Cookie: B=xh203jfsf; Y=3sdkfjej

<cr><lf>

Copyright © 2005 Department of Computer Science

CPSC 441 Winter 2012 12

HTTP Request Types

Called Methods:

• GET: retrieve a file (95% of requests)

• HEAD: just get meta-data (e.g., mod time),
 Asks the server to return the response headers only

 Check characteristics of a resource without downloading it

 Saving bandwidth

• POST: submitting a form to a server.
 It's usually a program to handle the data you're sending

 HTTP response is normally program output, not a file

• PUT: store enclosed document as URI

Copyright © 2005 Department of Computer Science

HTTP Request Types

• DELETE: removed named resource

• LINK/UNLINK: in 1.0, gone in 1.1

• TRACE: http “echo” for debugging (added in 1.1)

• CONNECT: used by proxies for tunneling (1.1)

• OPTIONS: request for server/proxy options (1.1)

CPSC 441 Winter 2012 13

Copyright © 2005 Department of Computer Science

CPSC 441 Winter 2012 14

Response Format

HTTP/1.0 200 OK

Server: Tux 2.0

Content-Type: image/gif

Content-Length: 43

Last-Modified: Fri, 15 Apr 1994 02:36:21 GMT

Expires: Wed, 20 Feb 2002 18:54:46 GMT

Date: Mon, 12 Nov 2001 14:29:48 GMT

Cache-Control: no-cache

Pragma: no-cache

Connection: close

Set-Cookie: PA=wefj2we0-jfjf

<cr><lf>

<data follows…>

• Similar format to requests (i.e., ASCII)

Copyright © 2005 Department of Computer Science

CPSC 441 Winter 2012 15

HTTP Response Types

• 1XX: Informational (def’d in 1.0, used in 1.1)
100 Continue, 101 Switching Protocols

• 2XX: Success
200 OK, 206 Partial Content

• 3XX: Redirection
301 Moved Permanently, 304 Not Modified

• 4XX: Client error
400 Bad Request, 403 Forbidden, 404 Not Found

• 5XX: Server error
 500 Internal Server Error, 503 Service
Unavailable, 505 HTTP Version Not Supported

Copyright © 2005 Department of Computer Science

CPSC 441 Winter 2012 16

Outline of an HTTP Transaction

• This section describes the

basics of servicing an HTTP

GET request from user space

• Assume a single process

running in user space, similar

to Apache 1.3

• We’ll mention relevant socket

operations along the way

initialize;

forever do {

 get request;

 process;

 send response;

 log request;

}

server in
a nutshell

Copyright © 2005 Department of Computer Science

CPSC 441 Winter 2012 17

Readying a Server

• First thing a server does is notify the OS it is interested in WWW

server requests; these are typically on TCP port 80. Other

services use different ports (e.g., SSL is on 443)

• Allocate a socket and bind()'s it to the address (port 80)

• Server calls listen() on the socket to indicate willingness to

receive requests

• Calls accept() to wait for a request to come in (and blocks)

• When the accept() returns, we have a new socket which

represents a new connection to a client

s = socket(); /* allocate listen socket */

bind(s, 80); /* bind to TCP port 80 */

listen(s); /* indicate willingness to accept */

while (1) {

 newconn = accept(s); /* accept new connection */

Copyright © 2005 Department of Computer Science

CPSC 441 Winter 2012 18

Processing a Request (1 of 2)

• getsockname() called to get the remote host name
– for logging purposes (optional, but done by most)

• gethostbyname() called to get name of other end
– again for logging purposes

• gettimeofday() is called to get time of request
– both for Date header and for logging

• read() is called on new socket to retrieve request

• request is determined by parsing the data
– Example: “GET /images/jul4/flag.gif”

remoteIP = getsockname(newconn);

remoteHost = gethostbyname(remoteIP);

gettimeofday(currentTime);

read(newconn, reqBuffer, sizeof(reqBuffer));

reqInfo = serverParse(reqBuffer);

Copyright © 2005 Department of Computer Science

CPSC 441 Winter 2012 19

Processing a Request (2 of 2)

• stat() called to test file path

– to see if file exists/is accessible

– may not be there, may only be available to certain people

– "/microsoft/top-secret/plans-for-world-domination.html"

• stat() also used for file meta-data

– e.g., size of file, last modified time

– "Has file changed since last time I checked?“

• might have to stat() multiple files and directories

• assuming all is OK, open() called to open the file

fileName = parseOutFileName(requestBuffer);

fileAttr = stat(fileName);

serverCheckFileStuff(fileName, fileAttr);

open(fileName);

Copyright © 2005 Department of Computer Science

CPSC 441 Winter 2012 20

Responding to a Request

• read() called to read the file into user space

• write() is called to send HTTP headers on socket

(early servers called write() for each header!)

• write() is called to write the file on the socket

• close() is called to close the socket

• close() is called to close the open file descriptor

• write() is called on the log file

read(fileName, fileBuffer);

headerBuffer = serverFigureHeaders(fileName, reqInfo);

write(newSock, headerBuffer);

write(newSock, fileBuffer);

close(newSock);

close(fileName);

write(logFile, requestInfo);

Copyright © 2005 Department of Computer Science

Hint for Assignment1

CPSC 441 Winter 2012 21

socket()

bind()

listen()

accept()

write()

read()

Proxy (your program)

close()

socket()

Browser (client)

connect()

write()

read()

close()

Get request

socket()

bind()

listen()

accept()

write()

read()

read()

Web Server

close()

socket()

connect()

write()

read()

close()

Get

data

modify

Act as server

Act as client

Copyright © 2005 Department of Computer Science

Thanks for

attending!!

CPSC 641 Winter 2011 22

