
TA: Xifan Zheng

Email: zhengxifan0403@gmail.com

Welcome to

CPSC 441!

Today’s Tutorial

Welcome to CPSC 441

• HTTP protocol review
• HTTP request/response specification
• Conditional Get
• Redirection

What is HTTP?

• HTTP stands for Hypertext Transfer Protocol.

– Used to deliver virtually all files and other data (collectively called resources) on the
World Wide Web

– Usually, HTTP takes place through TCP/IP sockets.

• A browser is an HTTP client

– It sends requests to an HTTP server (Web server)

– The standard/default port for HTTP servers to listen on is 80

• A resource is some chunk of data that is referred to by a URL

– The most common kind of resource is a file

– A resource may also be a dynamically-generated content, e.g., query result, CGI scrip
output, etc.

– As a practical matter, almost all HTTP resources are currently either files or server-side
script output.

3

Structure of HTTP Transactions

• HTTP uses the client-server model:
– An HTTP client opens a connection and sends a request message to an HTTP

server;
– The server then returns a response message, usually containing the resource

that was requested.
– After delivering the response, the server closes the connection (or not).

• Format of the HTTP request and response messages:
– Almost the same, human readable (English-oriented)
– An initial line specifying the method,
– zero or more header lines,
– a blank line (i.e. a CRLF by itself), and
– an optional message body (e.g. a file, or query data, or query output).

<initial line, different for request vs. response>
Header1: value1
Header2: value2
Header3: value3
<optional message body, like file or query data; may be many lines, may be binary>

4

Initial Request Line

• The initial line is different for the request than for the response.
• A request line has three parts, separated by spaces:

– a method name,
– the local path of the requested resource, (host name will be specified in hearder line)
– and the version of HTTP being used.

• A typical request line is:

 GET /path/to/file/index.html HTTP/1.1

• GET is the most common HTTP method; it says "give me this resource".
• Other methods include POST and HEAD, etc.
• Method names are always uppercase.
• The path is the part of the URL after the host name, also called the request URI (a

URI is like a URL, but more general).
• The HTTP version always takes the form "HTTP/x.x", uppercase.

5

Initial Response Line

6

– HTTP/1.0 200 OK
• Status line:

– The HTTP version,

– A response status code that gives
the result of the request,

– An English reason
phrase describing the status code.

• Response categories:
– 1xx an informational message

only

– 2xx success of some kind

– 3xx redirects the client to another
URL

– 4xx an error on the client's part

– 5xx an error on the server's part

• The most common status codes
are:
– 200 OK The request succeeded, and

the resulting resource is returned in
the message body.

– 404 Not Found

– 301 Moved Permanently

– 302 Moved Temporarily

– 303 See Other (HTTP 1.1 only)The
resource has moved to another URL

– Check RFC 2616 for the complete
list

Header Lines

• Header lines provide information about the request, response, or
the object sent.

• One line per header, of the form "Header-Name: value", ending
with CRLF.

• The header name is not case-sensitive (the value may be).

• Header lines beginning with space or tab are actually part of the

previous header line, folded into multiple lines. E.g.,
Header1: some-long-value-1a, some-long-value-1b
HEADER1: some-long-value-1a,
 some-long-value-1b

7

Header Lines (cont’d)

• HTTP 1.1 defines 46 headers, and one (Host:) is required in requests.

• The User-Agent: header identifies the program that's making the request,
in the form "Program-name/x.xx", where x.xx is the (mostly)
alphanumeric version of the program.
– For example, Netscape 3.0 sends the header
"User-agent: Mozilla/3.0Gold".

• Response headers from the server:

– The Server: header is analogous to the User-Agent: header: it identifies the
server software

– The Last-Modified: header gives the modification date of the resource that's
being returned. It's used in caching and other bandwidth-saving activities. Use
Greenwich Mean Time, in the format Last-Modified: Fri, 31 Dec 1999 23:59:59
GMT

8

The Message Body

• After headers, there may be a body of data

• In a response this may be:
– the requested resource
– or perhaps explanatory text if there's an error.

• In a request this may be:

– the user-entered data
– or uploaded files

• If an HTTP message includes a body, there are usually header lines in the

message that describe the body.
– The Content-Type: header gives the MIME-type of the data

e.g., text/html or image/gif.
– The Content-Length: header gives the number of bytes in the body.

9

Sample HTTP Exchange

HTTP Request

GET /path/file.html HTTP/1.1

Host: www.host1.com:80

User-Agent: HTTPTool/1.0

[blank line here]

HTTP Response

HTTP/1.1 200 OK

Date: Fri, 31 Dec 1999 23:59:59 GMT

Content-Type: text/html

Content-Length: 1354

<html>

<body>

<h1>Happy New Millennium!</h1>

(more file contents) . . . </body>

</html>

10

The HEAD Method

• A HEAD request is just like a GET request, except:

– It asks the server to return the response headers only, not the actual resource.
(i.e. no message body)

– This is used to check characteristics of a resource without actually
downloading it

– HEAD is used when you don't actually need a file's contents.

• The response to a HEAD request must never contain a message body, just
the status line and headers.

11

The POST Method

• A POST request is used to send data to the server

• A POST request is different from a GET request in the following ways:
– There's a block of data sent with the request, in the message body.
– There are usually extra headers to describe this message body, e.g., Content-

Type: and Content-Length:.
– The request URI is not a resource to retrieve; it's usually a program to handle

the data you're sending.
– The HTTP response is normally program output, not a static file.

• The most common use of POST, is to submit HTML form data to CGI

scripts. In this case:
– The Content-Type: header is usually application/x-www-form-urlencoded,
– The Content-Length: header gives the length of the HTML form data.

12

The POST Method

13

• Here's a typical form
submission, using POST:

• You can use a POST request to

send whatever data you want,
not just form submissions. Just
make sure the sender and the
receiving program agree on
the format.

• The GET method can also be
used to submit forms. The
form data is URL-encoded and
appended to the request URI.

POST /login.jsp HTTP/1.1
Host: www.mysite.com
User-Agent: Mozilla/4.0
Content-Length: 27
Content-Type: application/x-www-
form-urlencoded

userid=joe&password=guess
me

Caching

• To avoid sending resources that don't need to be sent, thus saving
bandwidth/reduce response time

• Proxy or web browser check if the required content is already available in
the cache.

– A copy of the previous content is saved in the cache

– Upon a new request, first the cache is searched

– If found in cache, return the content from cache

– If not in cache, send request to the server

• But what if the content is out of date?

– We need to check if the content is modified since last access

14

The Date: Header

• We need timestamp responses for caching.

• Servers must timestamp every response with a Date: header containing
the current time e.g.,

 Date: Fri, 31 Dec 1999 23:59:59 GMT

• All responses except those with 100-level status (but including error
responses) must include the Date: header.

• All time values in HTTP use Greenwich Mean Time.

15

Conditional Get

• Allow Cache server to verify that its objects are up to
date or not

• Should include If-Modified-Since: This header is used
with the GET method to check if a content is modified
since the last access
– If the requested resource has been modified since the

given date, ignore the header and return the resource.
– Otherwise, return a "304 Not Modified" response,

including the Date: header and no message body, e.g.,

HTTP/1.1 304 Not Modified
Date: Fri, 31 Dec 1999 23:59:59 GMT
[blank line here]

16

Conditional Get Example

Request

GET /sample.html HTTP/1.1
Host: example.com
If-Modified-Since: Tue, 27 Dec 2005 11:25:19
GMT

Response

HTTP/1.1 304 Not Modified
Date: Wed, 28 Dec 2005 05:25:19 GMT
Server: Apache/1.3.33 (Unix) PHP/4.3.10

(empty entity body)

17

GET /sample.html HTTP/1.1
Host: example.com

Conditional Get Request

First time:
Response

HTTP/1.1 200 OK

Date: Tue, 27 Dec 2005 11:25:19 GMT
Server: Apache/1.3.33 (Unix) PHP/4.3.10
Last-Modified: Wed, 01 Sep 2004 13:24:52 GMT

(data data data data….) Next time:

Redirection Example

Request 1

GET /~carey/index.html HTTP/1.1

Host: www.cpsc.ucalgary.ca

Connection: keep-alive

User-Agent: Mozilla/5.0 […]

Accept: text/html,application/ […]

Accept-Encoding: gzip,deflate,sdch

[…]

\r\n

Response 1

HTTP/1.1 302 Found
Date: Sat, 21 Jan 2012 01:10:43 GMT
Server: Apache/2.2.4 (Unix) mod_ssl/2.2.4 OpenSSL/0.9.7a
 PHP/5.2.9 mod_jk/1.2.25
Location: http://pages.cpsc.ucalgary.ca/~carey/index.html

\r\n

18

Request 2

GET /~carey/index.html HTTP/1.1
Host: pages.cpsc.ucalgary.ca
Connection: keep-alive
User-Agent: Mozilla/5.0 […]
Accept: text/html,application/ […]
Accept-Encoding: gzip,deflate,sdch
[…]
\r\n

Response 2

HTTP/1.1 200 OK
Date: Sat, 21 Jan 2012 01:11:49 GMT
Server: Apache/2.2.4 (Unix) […]
Last-Modified: Mon, 16 Jan 2012 05:40:45 GMT
Content-Length: 3157
Keep-Alive: timeout=5
Connection: Keep-Alive
Content-Type: text/html
\r\n
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
[…]
</html>
\r\n

Hint for Assignment1

CPSC 441 Winter 2012 19

socket()

bind()

listen()

accept()

write()

read()

Proxy (your program)

close()

socket()

Browser (client)

connect()

write()

read()

close()

Get request

socket()

bind()

listen()

accept()

write()

read()

read()

Web Server

close()

socket()

connect()

write()

read()

close()

Get

data

modify

Act as server

Act as client

Questions?

Thanks for attending!

