TA: Xifan Zheng
Email: zhengxifan0403@gmail.com

Welcome to CPSC 441!

Outline

- Introduction to Hub
- Introduction to Switch
- Switch table
- Self-learning
- Hub vs. Switch vs. Router

LAN interconnection

- We need to break down big networks to subLANs
- Limited amount of supportable traffic: on single LAN, all stations must share bandwidth
- Limited length: 802.3 (Ethernet) specifies maximum cable length. For 10 Mbps :
- Maximum length of the wire: 2,500 meter
- Large "collision domain" (can collide with many stations)

Role of switches/hubs

- Receive incoming link-layer frames/bits and forward them onto outgoing links
- Transparent to host/router: unaware that the frame/bits will be receiving by switches/hubs and then forwarded

HUBS

- Physical Layer devices
- Essentially repeaters operating at bit levels: repeat received bits on one interface to all other interfaces
- Hubs can be arranged in a hierarchy (or multi-tier design), with backbone hub at its top
- Each connected LAN referred to as LAN segment

Hubs: Pros

- Hub Advantages:
- simple, inexpensive device
- Multi-tier provides graceful degradation: portions of the LAN continue to operate if one hub malfunctions
- extends maximum distance between node pairs (100m per Hub)
- limitations : Hubs do not isolate collision domains: node may collide with any node residing at any segment in LAN
- Single collision domain results in no increase in max throughput
- multi-tier throughput same as single segment throughput
- Individual LAN restrictions pose limits on number of nodes in same collision domain and on total allowed geographical coverage
- cannot connect different Ethernet types (e.g., 10BaseT and 100baseT) Why?

Switch

- Link-layer devices:
- store, forward Ethernet frames
- examine incoming frame's MAC address, selectively forward frame based on its destination. When frame is to be forwarded on segment, bridge uses CSMA/CD to access segment and transmit
- Advantages:
- Isolates collision domains resulting in higher total max throughput, and does not limit the number of nodes nor geographical coverage
- Can connect different type Ethernet since it is a store and forward device
- Transparent: no need for any change to hosts LAN adapters

Switch: allows multiple simultaneous transmissions

- hosts have dedicated, direct connection to switch
- switches buffer packets
- Ethernet protocol used on each incoming link, but no collisions; full duplex
- each link is its own collision domain
- switching: A-to- A^{\prime} and $\mathrm{B}-$ to- B^{\prime} simultaneously, without collisions
- not possible with dumb hub

switch with six interfaces
(1,2,3,4,5,6)

Switch Table

- Q: how does switch know that A^{\prime} reachable via interface $4, B^{\prime}$ reachable via interface 5?
- $\underline{A}:$ each switch has a switch table, each entry:
- (MAC address of host, interface to reach host, time stamp)
- looks like a routing table!
- Q: how are entries created, maintained in switch table?
- something like a routing protocol?

switch with six interfaces

$$
(1,2,3,4,5,6)
$$

Switch: self-learning

- switch learns which hosts can be reached through which interfaces
- when frame received, switch "learns" location of sender: incoming LAN segment
- records sender/location pair in switch table

MAC addr	interface	time
A	1	60
Switch table (initially empty)		

Switch: frame filtering/forwarding

When frame received:

1. record link associated with sending host
2. index switch table using MAC dest address
3. if entry found for destination then \{
if dest on segment from which frame arrived then drop the frame
else forward the frame on interface indicated
\}
else flood

Self-learning, forwarding: example

- frame destination unknown: flood
- destination A location known: selective send

MAC addr	interface	time
A	1	60
A $^{\prime}$	4	60

Switch table

(initially empty)

Interconnecting switches

- switches can be connected together

\square Q: sending from A to F - how does S_{1} know to forward frame destined to F via S_{4} and S_{2} ?
$\square \underline{\text { A: self learning! (works exactly the same as in single-switch }}$ case!)

Resources

- Some useful youtube videos:
- http://www.youtube.com/watch?v=8bPj9KDy UBw
- http://www.youtube.com/watch?v=eLchn1oR Nec
- http://www.youtube.com/watch?v=GiyVDpY8 WIO

