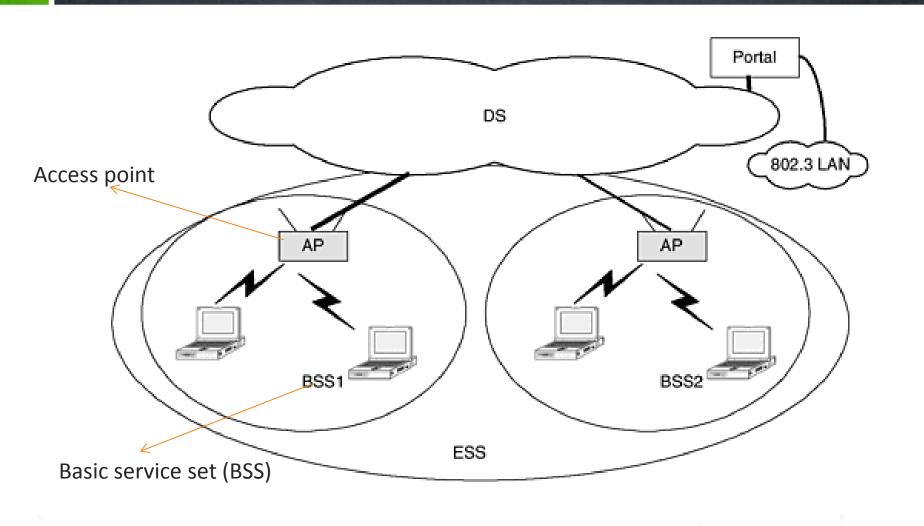
TA: Xifan Zheng Email: zhengxifan0403@gmail.com Welcome to CPSC 441!

#### **Outline**

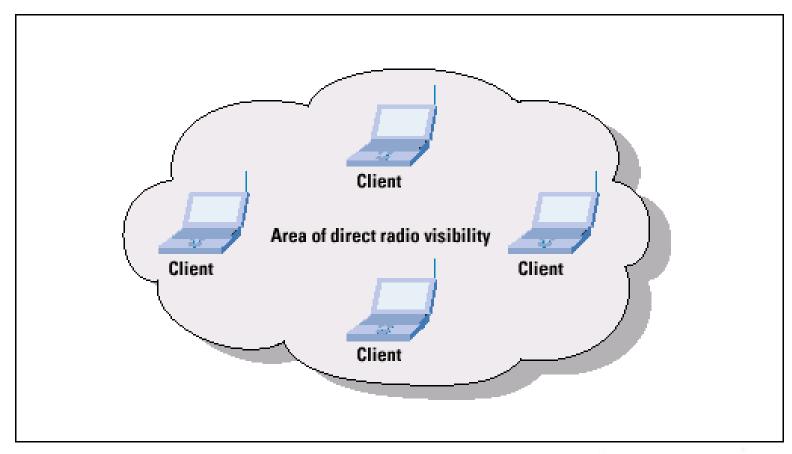
- Introduction to WIFI
- Comparison of different IEEE 802.11 standard
- AP scanning mechanism
- CSMA/CA vs. CSMA/CD
- 802.11 frame: why four address?

#### Introduction

- WiFi: defined as any "wireless local area network (WLAN)
  products that are based on IEEE 802.11 standards.
- Popular technology that allows an electronic device to exchange data wirelessly (using radio waves) over a computer network.
- IEEE established the 802.11 Group in 1990. Specifications for standard ratified in 1997.
  - Initial speeds were 1 and 2 Mbps.
  - IEEE modified the standard in 1999 to include 802.11 a and b.
  - 802.11g was added in 2003.
  - 802.11b equipment first available, then a, followed by g.




# Why Choose? A vs B vs G


**Wireless Technology Comparison Chart** 

| Popularity Speed Relative Cost | 11<br>Mbps    | Widely adopted. Readily available everywhere.  Up to 11Mbps (note: cable modem service typically averages no more than 4 to 5Mbps).                           | 54<br>Mbps    | New technology.  Up to 54Mbps (5X greater than 802.11b).                    | <b>99</b>                | New technology with rapid growth expected.  Up to 54Mbps                                                                               |
|--------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 21 1720 10 11                  | Mbps          | service typically averages no more than 4 to 5Mbps).                                                                                                          | 54<br>Mbps    |                                                                             | 54                       | Up to 54Mbps                                                                                                                           |
| Relative Cost                  | 8)            | Inexpensive.                                                                                                                                                  |               |                                                                             | Mbps                     | (5X greater than 802.11b).                                                                                                             |
|                                |               |                                                                                                                                                               | 3             | Relatively more expensive.                                                  | 3                        | Relatively inexpensive.                                                                                                                |
| Frequency                      | 2.4<br>GHz    | More crowded 2.4GHz band. Some conflict may occur with other 2.4GHz devices like cordless phones, microwave ovens, etc.                                       | 5<br>GHz      | Uncrowded 5GHz band can coexist with 2.4 GHz networks without interference. | 2.4<br>GHz               | More crowded 2.4GHz band. Some conflict may occur with other 2.4GHz devices like cordless phones, microwave ovens, etc.                |
| Range                          | 100-150       | Good Range. Typically up to 100-150 feet indoors, depending on construction, building materials, room layout.                                                 | 25-75         | Shorter range than 802.11b & 802.11g. Typically 25 to 75 feet indoors.      | 100-150                  | Good Range. Typically up to 100-<br>150 feet indoors, depending on<br>construction, building materials,<br>room layout.                |
| Public Access                  | <b>≈</b>      | The number of public "hotspots" is growing rapidly, allowing wireless connectivity in many airports, hotels, college campuses, public areas, and restaurants. | X             | None at this time.                                                          |                          | Compatible with current 802.11b hotspots (at 11Mbps). Also, it is expected that most 802.11b hotspots will quickly convert to 802.11g. |
| Compatibility                  | OK<br>802.11b | Widest adoption.                                                                                                                                              | OK<br>802.11s | Incompatible with 802.11b or 802.11g.  Otransport.com/                      | OK<br>802.11b<br>802.11g | Interoperates with 802.11b<br>networks (at 11Mpbs). Incompatible<br>with 802.11a.                                                      |

#### 802.11 LAN architecture



## 802.11 Ad Hoc network



http://www.isoc.org/pubs/int/cisco-1-1.html

#### Scan the AP

## Passive scanning:

- 1. Beacon frames sent from Aps
- 2. Associate Request frame sent: host to selected AP
- 3. Association Response frame sent: selected AP to host

### Active scanning:

- 1. Probe Request frames broadcast from host
- 2. Probe Response frame sent form APs
- 3. Association Request frame sent: host to selected AP
- 4. Association Response frame sent: selected AP to host

## **Protocol Stack View**

Telnet, FTP, Email, Web, etc. TCP, UDP IP, ICMP, IPX Logical Link Control - 802.2 (Interface to the upper layer protocols) MAC

**Application** 

**Presentation** 

**Session** 

**Transport** 

**Network** 

**Data Link** 

Wireless lives at Layers 1 & 2 only!

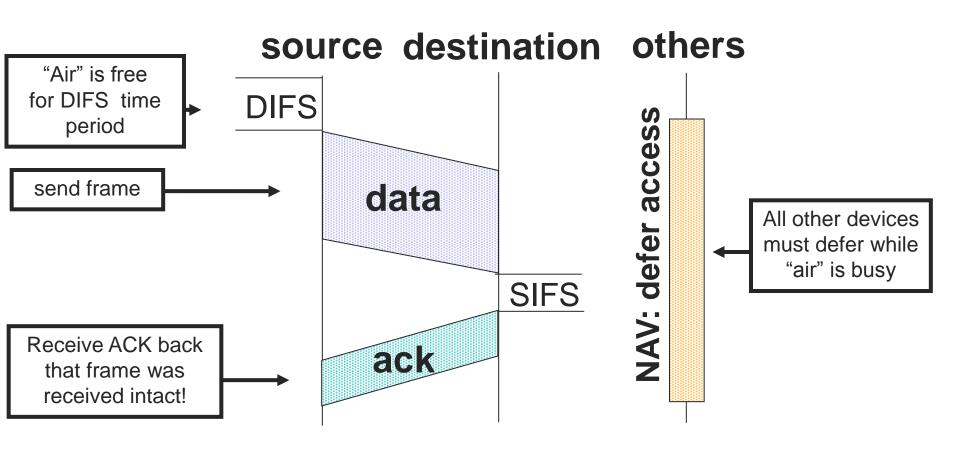
Physical Layer Convergence Protocol

802.3, 802.5, **802.11** 

LAN: 10BaseT, 10Base2, 10BaseFL

WLAN: FHSS, DSSS, IR

**Physical** 


# CSMA/CA

- Short for "Carrier Sense Multiple Access with Collision Avoidance"
- Why "Collision Avoidance", not "Collision Detection"?
- Hard to build hardware that can detect a collision because of the weak received signal.
- 2. Hidden terminal problem and fading

# CSMA/CA Protocol (cont.)

- If channel idle, transmit frame after DIFS (Distributed Inter-frame Space)
- 2. Otherwise, choose random backoff value (exponential backoff)
- 3. If channel is sensed idle, count down backoff value, otherwise frozen
- 4. When the counter reach zero, transmits the entire frame and then wait for acknowledgment
- 5. If acknowledgment not received, go back to step2

# CSMA/CA



- \* SIFS Short Inter-Frame Space (approx 28 µs)
- Every frame is acked except broadcast and multicast!


# CSMA/CA VS. CSMA/CD

- 802.11 uses collision-avoidance techniques, instead of using collision detection
- 802.11 uses a link-layer acknowledgment/retransmission scheme, because of the relatively high bit error rates of wireless channels



# 802.11 frame: why four address fields?

- 1st for source MAC address
- 2<sup>nd</sup> for destination wireless station MAC address
- 3<sup>rd</sup> for router interface MAC address
- 4<sup>th</sup> for ad hoc mode (not discuss here)

