
Introduction

Internet protocol stack

▪ application: supporting network
applications
• FTP, SMTP, HTTP

▪ transport: process-process data
transfer
• TCP, UDP

▪ network: routing of datagrams from
source to destination
• IP, routing protocols

▪ link: data transfer between
neighboring network elements
• Ethernet, 802.111 (WiFi), PPP

▪ physical: bits “on the wire”

application

transport

network

link

physical

1-1

Introduction

source

application

transport

network

link

physical

HtHn M

segment Ht

datagram

destination

application

transport

network

link

physical

HtHnHl M

HtHn M

Ht M

M

network

link

physical

link

physical

HtHnHl M

HtHn M

HtHn M

HtHnHl M

router

switch

Encapsulation
message M

Ht M

Hn

frame

1-2

Introduction

What’s the Internet: “nuts and bolts” view

▪ billions of connected
computing devices:

• hosts = end systems

• running network apps

▪ communication links
• fiber, copper, radio,

satellite
• transmission rate:

bandwidth

▪ packet switches: forward
packets (chunks of data)

• routers and switches

wired
links

wireless
links

router

smartphone

PC

server

wireless
laptop

1-3

mobile network

global ISP

regional ISP

home
network

institutional
network

Introduction

Four sources of packet delay (1 of 2)

dproc: nodal processing
▪ check bit errors

▪ determine output link

▪ typically < msec

dqueue: queueing delay
▪ time waiting at output link

for transmission

▪ depends on congestion
level of router

1-4

propagation

nodal

processing queueing

dnodal = dproc + dqueue + dtrans + dprop

A

B

transmission

Introduction

dtrans: transmission delay:
▪ L: packet length (bits)

▪ R: link bandwidth (bps)

▪ dtrans = L/R

dprop: propagation delay:
▪ d: length of physical link

▪ s: propagation speed (~2x108 m/sec)

▪ dprop = d/s

Four sources of packet delay (2 of 2)

1-5* Check out the Java applet for an interactive animation on trans vs. prop delay

dtrans and dprop

very different

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

propagation

nodal

processing queueing

dnodal = dproc + dqueue + dtrans + dprop

A

B

transmission

Application Layer 2-6

Sockets

▪ process sends/receives messages to/from its socket

▪ socket analogous to door

• sending process shoves message out door

• sending process relies on transport infrastructure on
other side of door to deliver message to socket at
receiving process

Internet

controlled

by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

Application Layer 2-7

Internet transport protocols services

TCP service:
▪ reliable transport between

sending and receiving
process

▪ flow control: sender won’t
overwhelm receiver

▪ congestion control: throttle
sender when network
overloaded

▪ does not provide: timing,
minimum throughput
guarantee, security

▪ connection-oriented: setup
required between client and
server processes

UDP service:
▪ unreliable data transfer

between sending and
receiving process

▪ does not provide: reliability,
flow control, congestion
control, timing,
throughput guarantee,
security, or connection
setup,

Q: why bother? Why is
there a UDP?

Chapter 2: summary

▪ application architectures

• client-server

• P2P

▪ application service
requirements:

• reliability, bandwidth, delay

▪ Internet transport service
model

• connection-oriented,
reliable: TCP

• unreliable, datagrams: UDP

our study of network apps now complete!

Application Layer 2-8

▪ specific protocols:

• HTTP

• SMTP, POP, IMAP

• DNS

• P2P: BitTorrent

▪ video streaming, CDNs

▪ socket programming:

TCP, UDP sockets

Transport Layer 3-9

▪ characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

▪ important in application, transport, link layers
• top-10 list of important networking topics!

Principles of reliable data transfer

Transport Layer 3-10

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

▪ full duplex data:
• bi-directional data flow

in same connection

• MSS: maximum
segment size

▪ connection-oriented:
• handshaking (exchange

of control msgs) inits
sender, receiver state
before data exchange

▪ flow controlled:
• sender will not

overwhelm receiver

▪ point-to-point:
• one sender, one

receiver

▪ reliable, in-order byte
stream:
• no “message

boundaries”

▪ pipelined:
• TCP congestion and

flow control set window
size

Transport Layer 3-11

TCP segment structure

source port # dest port #

32 bits

application

data

(variable length)

sequence number

acknowledgement number

receive window

Urg data pointerchecksum

FSRPAU
head

len

not

used

options (variable length)

URG: urgent data

(generally not used)

ACK: ACK #

valid

PSH: push data now

(generally not used)

RST, SYN, FIN:

connection estab

(setup, teardown

commands)

bytes

rcvr willing

to accept

counting

by bytes

of data

(not segments!)

Internet

checksum

(as in UDP)

Transport Layer 3-12

TCP congestion control: additive increase
multiplicative decrease

▪ approach: sender increases transmission rate (window
size), probing for usable bandwidth, until loss occurs

• additive increase: increase cwnd by 1 MSS every
RTT until loss detected

• multiplicative decrease: cut cwnd in half after loss
c
w
n
d
:

T
C

P
 s

e
n

d
e

r

c
o

n
g

e
s
ti
o

n
 w

in
d

o
w

 s
iz

e

AIMD saw tooth

behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time

