
Introduction

Internet protocol stack

▪ application: supporting network 
applications
• FTP, SMTP, HTTP

▪ transport: process-process data 
transfer
• TCP, UDP

▪ network: routing of datagrams from 
source to destination
• IP, routing protocols

▪ link: data transfer between 
neighboring  network elements
• Ethernet, 802.111 (WiFi), PPP

▪ physical: bits “on the wire”
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Introduction

What’s the Internet: “nuts and bolts” view

▪ billions of connected 
computing devices: 

• hosts = end systems

• running network apps

▪ communication links
• fiber, copper, radio, 

satellite
• transmission rate: 

bandwidth

▪ packet switches: forward 
packets (chunks of data)

• routers and switches
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Introduction

Four sources of packet delay (1 of 2)

dproc: nodal processing
▪ check bit errors

▪ determine output link

▪ typically < msec

dqueue: queueing delay
▪ time waiting at output link 

for transmission 

▪ depends on congestion 
level of router
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Introduction

dtrans: transmission delay:
▪ L: packet length (bits) 

▪ R: link bandwidth (bps)

▪ dtrans = L/R

dprop: propagation delay:
▪ d: length of physical link

▪ s: propagation speed (~2x108 m/sec)

▪ dprop = d/s

Four sources of packet delay (2 of 2)

1-5* Check out the Java applet for an interactive animation on trans vs. prop delay

dtrans and dprop

very different

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/
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Application Layer 2-6

Sockets

▪ process sends/receives messages to/from its socket

▪ socket analogous to door

• sending process shoves message out door

• sending process relies on transport infrastructure on 
other side of door to deliver message to socket at 
receiving process
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Application Layer 2-7

Internet transport protocols services

TCP service:
▪ reliable transport between 

sending and receiving 
process

▪ flow control: sender won’t 
overwhelm receiver 

▪ congestion control: throttle 
sender when network 
overloaded

▪ does not provide: timing, 
minimum throughput 
guarantee, security

▪ connection-oriented: setup 
required between client and 
server processes

UDP service:
▪ unreliable data transfer

between sending and 
receiving process

▪ does not provide: reliability, 
flow control, congestion 
control, timing, 
throughput guarantee, 
security, or connection 
setup, 

Q: why bother?  Why is 
there a UDP?



Chapter 2: summary

▪ application architectures

• client-server

• P2P

▪ application service 
requirements:

• reliability, bandwidth, delay

▪ Internet transport service 
model

• connection-oriented, 
reliable: TCP

• unreliable, datagrams: UDP

our study of network apps now complete!

Application Layer 2-8

▪ specific protocols:

• HTTP

• SMTP, POP, IMAP

• DNS

• P2P: BitTorrent

▪ video streaming, CDNs

▪ socket programming: 

TCP, UDP sockets



Transport Layer 3-9

▪ characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt)

▪ important in application, transport, link layers
• top-10 list of important networking topics!

Principles of reliable data transfer



Transport Layer 3-10

TCP: Overview  RFCs: 793,1122,1323, 2018, 2581

▪ full duplex data:
• bi-directional data flow 

in same connection

• MSS: maximum 
segment size

▪ connection-oriented:
• handshaking (exchange 

of control msgs) inits 
sender, receiver state 
before data exchange

▪ flow controlled:
• sender will not 

overwhelm receiver

▪ point-to-point:
• one sender, one 

receiver

▪ reliable, in-order byte 
stream:
• no “message 

boundaries”

▪ pipelined:
• TCP congestion and 

flow control set window 
size



Transport Layer 3-11

TCP segment structure

source port # dest port #

32 bits

application

data 

(variable length)

sequence number

acknowledgement number

receive window

Urg data pointerchecksum

FSRPAU
head

len

not

used

options (variable length)

URG: urgent data 

(generally not used)

ACK: ACK #

valid

PSH: push data now

(generally not used)

RST, SYN, FIN:

connection estab

(setup, teardown

commands)

# bytes 

rcvr willing

to accept

counting

by bytes 

of data

(not segments!)

Internet

checksum

(as in UDP)



Transport Layer 3-12

TCP congestion control: additive increase 
multiplicative decrease

▪ approach: sender increases transmission rate (window 
size), probing for usable bandwidth, until loss occurs

• additive increase: increase  cwnd by 1 MSS every 
RTT until loss detected

• multiplicative decrease: cut cwnd in half after loss 
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…. until loss occurs (then cut window in half)
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