CORS 2016

Autoscaling Effects in Speed Scaling Systems

Carey Williamson Department of Computer Science (joint work with Maryam Elahi and Philipp Woelfel)

- Dynamic CPU speed scaling systems
- Service rate adjusted based on offered load
- Classic tradeoff:
 - Faster speed \rightarrow lower response time, higher energy usage
- Two key design choices:
 - Speed scaler: how fast to run? (static, <u>coupled</u>, decoupled)
 - Scheduler: which job to run? (FCFS, <u>PS</u>, FSP, <u>SRPT</u>, LRPT)
- Research questions:
 - What are the "autoscaling" properties of coupled (i.e., jobcount based) speed scaling systems under heavy load?
 - In what ways are PS and SRPT similar or different?

- [Albers 2010] "Energy-Efficient Algorthms", CACM
- [Andrew et al. 2010] "Optimality, Fairness, and Robustness in Speed Scaling Designs", ACM SIGMETRICS
- [Bansal et al. 2007] "Speed Scaling to Manage Energy and Temperature", JACM
- [Elahi et al. 2012] "Decoupled Speed Scaling", QEST, PEVA
- [Wierman et al. 2009] "Power-Aware Speed Scaling in Processor Sharing Systems", IEEE INFOCOM, PEVA 2012
- [Weiser et al. 1994] "Scheduling for Reduced CPU Energy", USENIX OSDI
- [Yao et al. 1995] "A Scheduling Model for Reduced CPU Engergy", ACM FOCS

System Model (1 of 4)

Review: Birth-death Markov chain model of classic M/M/1 queue Fixed arrival rate λ Fixed service rate μ

Mean system occupancy: $N = \rho / (1 - \rho)$ $p_n = p_0 (\lambda/\mu)^n$ Ergodicity requirement: $\rho = \lambda/\mu < 1$ $U = 1 - p_0 = \rho$

Birth-death Markov chain model of classic M/M/ ∞ queue Fixed arrival rate λ

Service rate scales linearly with system occupancy ($\alpha = 1$)

Mean system occupancy: $N = \rho = \lambda/\mu$ System occupancy has Poisson distribution $U = 1 - p_0 \neq \rho$ Ergodicity requirement: $\rho = \lambda/\mu < \infty$

Birth-death Markov chain model of dynamic speed scaling system Fixed arrival rate $\boldsymbol{\lambda}$

Service rate scales sub-linearly with system occupancy ($\alpha = 2$)

Mean system occupancy: $N = \rho^2 = (\lambda/\mu)^2$ $p_n = p_0 \prod_{i=0}^{n-1} (\lambda/(\sqrt{i+1})\mu)$ System occupancy has higher variance than Poisson distribution Ergodicity requirement: $\rho = \lambda/\mu < \infty$

Birth-death Markov chain model of dynamic speed scaling system Fixed arrival rate $\boldsymbol{\lambda}$

Service rate scales sub-linearly with system occupancy ($\alpha > 1$)

Mean system occupancy: $N = \rho^{\alpha} = (\lambda/\mu)^{\alpha}$ $p_n = p_0 \prod_{i=0}^{n-1} (\lambda/(\sqrt[V]{i+1})\mu)$ System occupancy has higher variance than Poisson distribution Ergodicity requirement: $\rho = \lambda/\mu < \infty$

- In speed scaling systems, ρ and U differ
- Speed scaling systems stabilize even when ρ > 1
- In stable speed scaling systems, s = ρ (an invariant)
- PS is amenable to analysis; SRPT is not
- PS with linear speed scaling behaves like M/M/∞, which has Poisson distribution for system occupancy
- Increasing α changes the Poisson structure of PS
- At high load, $N \rightarrow \rho^{\alpha}$ (another invariant property)

PS Modeling Results

SRPT Simulation Results

Steady-State Probabilities for System Occupancy (Lambda = 2)

Probability

Comparing PS and SRPT

- Similarities:
 - Mean system speed (invariant property)
 - Mean system occupancy (invariant property)
 - Effect of α (i.e., the shift, the squish, and the squeeze)
- Differences:
 - Variance of system occupancy (SRPT is lower)
 - Mean response time (SRPT is lower)
 - Variance of response time (SRPT is higher)
 - PS is always fair; SRPT is unfair (esp. with speed scaling!)
 - Compensation effect in PS
 - Procrastination/starvation effect in SRPT

Number of Busy Periods

Busy Period Structure for PS and SRPT (simulation)

Busy Period Characteristics for PS and SRPT

- Under heavy load, busy periods coalesce and U \rightarrow 1
- Saturation points for PS and SRPT are <u>different</u>
 - Different "overload regimes" for PS and SRPT
 - Gap always exists between them
 - Gap shrinks as α increases
 - Limiting case ($\alpha = \infty$) requires $\rho < 1$ (i.e., fixed rate)
- SRPT suffers from starvation under very high load
- "Job count" stability and "work" stability differ

- The autoscaling properties of dynamic speed scaling systems are many, varied, and interesting!
 - Autoscaling effect: stable even at very high offered load (s = ρ)
 - Saturation effect: U \rightarrow 1 at heavy load, with N $\rightarrow \rho^{\alpha}$
 - The α effect: the shift, the squish, and the squeeze
- Invariant properties are helpful for analysis
- Differences exist between PS and SRPT
 - Variance of system occupancy; mean/variance of response time
 - Saturation points for PS and SRPT are different
 - SRPT suffers from starvation under very high load
- Our results suggest that PS becomes superior to SRPT for coupled speed scaling, if the load is high enough