
CPSC 531:
System Modeling and Simulation

Carey Williamson

Department of Computer Science

University of Calgary

Fall 2017

Recap: Simulation Model Taxonomy

2

▪ How to develop a simulation model:

1. Determine the goals and objectives

2. Build a conceptual model

3. Convert into a specification model

4. Convert into a computational model

5. Verify the model

6. Validate the model

▪ Typically an iterative process

Recap: DES Model Development

3

▪ Develops a common framework (and terminology)
for the modeling of complex systems

▪ Covers the basic building blocks for all discrete-event
simulation models

▪ Introduces and explains the fundamental concepts
and methodologies underlying all discrete-event
simulation packages:
— These concepts and methodologies are not tied to any

particular simulation package

Overview of DES Module

4

▪ Concepts in discrete-event simulation
— Terminology and concepts
— Two pedagogical examples

▪ Components of discrete-event simulation
— Time advance approaches
— Event scheduling approach

▪ Manual simulation
— Grocery store example

▪ Simulation program
— Simulation of queuing systems
— Infinite and finite population model
— Tandem queue with blocking

▪ Verification and validation of simulation models

Outline

5

▪ Concepts in discrete-event simulation
— Terminology and concepts
— Two pedagogical examples

▪ Components of discrete-event simulation
— Time advance approaches
— Event scheduling approach

▪ Manual simulation
— Grocery store example

▪ Simulation program
— Simulation of queuing systems
— Infinite and finite population model
— Tandem queue with blocking

▪ Verification and validation of simulation models

Outline

6

▪ Model: an abstract representation of a (real) system

▪ System: a collection of entities that interact together
over time (e.g., people, machines, CPU, Web server)

▪ System state: a collection of variables that contain all
the information necessary to adequately describe
the system at any time (e.g., occupancy)

▪ Entity: any object or component in the system (e.g., a
server, a customer, a machine)

▪ Attributes: the properties of a given entity

▪ List: a collection of associated entities, ordered in
some logical fashion (e.g., sets, queues)

Concepts in Discrete-Event Simulation (1 of 2)

7

▪ Event: an instantaneous occurrence that changes the state of
a system (e.g., an arrival of a new customer)

▪ Event list: a list of event notices for future events, ordered by
time of occurrence, also called the future event list (FEL)

▪ Activity (unconditional wait): a duration of time of specified
length that is known when it begins (e.g., a service time)

▪ Delay (conditional wait): a duration of time of unspecified
indefinite length, which is not known until it ends (e.g.,
customer delay while waiting in line)

▪ Clock: a variable representing simulated time, which can be
either continuous or discrete

Note: different commercial simulation packages use different
terminology for the same or similar concepts

Concepts in Discrete-Event Simulation (2 of 2)

8

▪ An activity represents a service time, an inter-arrival time, or
any processing time whose duration has been defined or
characterized by the modeler:

— An activity’s duration may be specified as:

▪ Deterministic or stochastic

▪ A function depending on system variables and/or entity
attributes

— Duration is not affected by the occurrence of other events

▪ A delay’s duration is determined by current system conditions
(not specified by the modeller ahead of time):

— For example, a customer’s delay in a waiting line may be dependent
on the number and duration of service of other customers ahead in
line, and whether a server has a failure (and repair time) or not

Key Concepts in Discrete-Event Simulation

9

A computer technical support center with personnel taking
calls and providing service:

— Three support staff: Alice, Bob, Chris (multiple support channel)

— A simplifying rule: alphabetical tie-breaker if > 1 staff are idle

▪ Goal: to find out how well the current arrangement
works in terms of the response time of the system

▪ Random variables:

— Arrival time between calls

— Service time (different distributions for Alice, Bob, and Chris)

Example 1: ABC Call Center

10

The ABC Call Center System is a discrete-event model with
the following components:

▪ System state:
— The number of callers waiting to be served at time t

— Indicator that Alice is idle or busy at time t

— Indicator that Bob is idle or busy at time t

— Indicator that Chris is idle or busy at time t

▪ Entities: neither the caller nor the servers need to be
explicitly represented, except in terms of the state
variables, unless certain per-caller or per-server statistics
are desired

States in ABC Call Center Example

11

▪ Events:
— Arrival of a call
— Service completion by Alice
— Service completion by Bob
— Service completion by Chris

▪ Activities:
— Inter-arrival time
— Service time by Alice
— Service time by Bob
— Service time by Chris

▪ Delay: a caller’s wait in queue until Alice, Bob, or Chris
becomes free

Events in ABC Call Center Example

12

A pancake restaurant in an old church in Brisbane, Australia:
— Host/hostess for seating of customers (possible waiting here)
— Waiter/waitress for ordering/bringing food and beverages
— Kitchen and cook(s) for preparing food (possible queueing too!)
— Cashier for payment and departure

▪ Goal: to find out how many staff (and tables) to have to
keep the response time of the system reasonable

▪ Random variables:
— Arrival times of customers
— Sizes of groups
— Time of day
— Service times for ordering, eating, payment, etc.

Example 2: Pancake Manor

13

Example 2: Pancake Manor

14

The Pancake Manor restaurant is a discrete-event model
with the following components:

▪ System state:
— The number of customers waiting to be seated at time t

— The number of customers waiting to order at time t

— The number of customers waiting for food at time t

— The number of customers eating at time t

— The number of customers waiting to pay at time t

— The number of available/occupied tables at time t

▪ Entities: customers; host/hostess; waiter/waitress; cooks
in kitchen; tables in restaurant; other?

States in Pancake Manor Example

15

▪ Events:
— Arrival of a customer (or group of customers)
— Service completion by host/hostess
— Service completion by waiter/waitress
— Service completion by cook
— Service completion by cashier

▪ Activities:
— Inter-arrival time
— Service time by host/hostess
— Service time by waiter/waitress
— Service time by cook
— Service time by cashier

▪ Delay: a caller’s wait for seating, ordering, eating, paying, etc.

Events in Pancake Manor Example

16

▪ Concepts in discrete-event simulation
— Terminology and concepts
— Two pedagogical examples

▪ Components of discrete-event simulation
— Time advance approaches
— Event scheduling approach

▪ Manual simulation
— Grocery store example

▪ Simulation program
— Simulation of queuing systems
— Infinite and finite population model
— Tandem queue with blocking

▪ Verification and validation of simulation models

Outline

17

▪ In DES simulation:

— The simulation is driven by events

— The simulation time advances based on sequence of events

— System state changes with events

▪ Requirements:

— Time advance algorithm

— Event scheduling

— Event processing

Components of a Simulation

18

The mechanism for advancing simulation time and guaranteeing
that all events occur in correct chronological order

▪ General approaches:

1. Time-stepping approach (fixed time increment):

— Also known as the “activity scanning” approach

— At each clock advance, the conditions for each activity are checked,
and if the conditions are true, then the corresponding activities begin

2. Event-scheduling approach (variable time advance):

— Concentrates on events and their effect on system state

— The simulation clock is advanced to the time of the next imminent
event on the FEL

Time Advance Approaches

19

▪ At any given time 𝑡, the list of all pending future events is
scanned to determine which ones are applicable

▪ FEL not strictly required, nor does it need to be ordered

▪ Main challenge is getting the time step appropriate
— Too small: high overhead; lots of scanning; not much happens

— Too large: too many events applicable at once

▪ Real systems often have highly-varying times between events

▪ Time-stepping approach is simple in concept, but often slow
in execution (i.e., high overhead)

▪ Suitable only for simulating small systems with well-defined
inherent time steps (e.g., mortgage.c, fluid flow)

Time-Stepping Approach

20

▪ At any given time 𝑡, the future event list (FEL) contains all
previously scheduled future events and their associated event
times (𝑡1, 𝑡2, …)

▪ FEL is ordered by event time, and the event times satisfy:
𝑡 ≤ 𝑡1 ≤ 𝑡2 ≤ ⋯ ≤ 𝑡𝑛 where 𝑡 is the value of the Clock.

Event-Scheduling Approach

21

Event-Scheduling Approach

22

▪ The management of a list
— The major list processing operations performed on a FEL are:

▪ Removal of the imminent event
▪ Addition of a new event to the list
▪ Occasionally removal of some event (cancellation of an event)

— Efficiency of search within the list depends on the logical
organization of the list and how the search is conducted

▪ Data structure for FEL? Choice depends on system size:
— Variable(s)
— Arrays
— Files
— Ordered linked list
— Priority queue
— Binary heap
— Calendar queue

List Processing

23

▪ Arrival event:
— For example, at time 0, the first arrival event is generated and is

scheduled on the FEL. When the clock eventually is advanced to
the time of this first arrival, a second arrival event is generated.

▪ Service completion event:
— Triggered only on the condition that a customer is present and a

server is free

▪ Stopping event, E:
— At time 0: schedule a stop simulation event at a specified future

time TE

— Run length TE is determined by the simulation itself. Generally,
TE is the time of occurrence of some specified event E (e.g.,
completion of 1000th customer) or condition (e.g., relative
change in estimate of π, or standard deviation of queue size)

Future Events

24

▪ Concepts in discrete-event simulation
— Terminology and concepts
— Two pedagogical examples

▪ Components of discrete-event simulation
— Time advance approaches
— Event scheduling approach

▪ Manual simulation
— Grocery store example

▪ Simulation program
— Simulation of queuing systems
— Infinite and finite population model
— Tandem queue with blocking

▪ Verification and validation of simulation models

Outline

25

Grocery Store with single checkout

▪ Single-channel queue:

— The system consists of those customers waiting plus the
one (if any) checking out

— For this example, a stopping time of 60 minutes is set

Example 3: Grocery Store

Customers waiting
in checkout line

Customer being
checked out

26

▪ Model components:
— System state:

▪ 𝐿𝑄 𝑡 : # of customers waiting in line at time 𝑡 (excluding the
customer being checked out)

▪ 𝐿𝑆 𝑡 : # of customer being checked out (1 or 0) at time 𝑡

— Entities: the server and customers are not explicitly modeled,
except in terms of the state variables

— Events: arrival (A), departure (D), stopping event (E)

— Event notices (event type, event time):
▪ (A, 𝑡) representing an arrival event to occur at future time 𝑡

▪ (D, 𝑡) representing a customer departure at future time 𝑡

▪ (E, 60) representing the simulation stop event at future time 60

— Activities: inter-arrival time and service time

— Delay: customer time spent in waiting line

Components of Grocery Store Example

27

▪ Event logic: execution of arrival event

Arrivals in Grocery Store Example

28

▪ Event logic: execution of departure event

Departures in Grocery Store Example

29

▪ Initial conditions are: the first customer arrives at
time 0 and begins service

▪ Only two statistics:

—𝐵: total server busy time (server utilization = 𝐵/𝑇𝐸)

—𝑀ax𝑄: maximum queue (checkout line) length observed

▪ Input parameters:

Scenario 1 in Grocery Store Example

Interarrival Times 0 8 6 1 8

Service Times 4 1 4 3 5

30

Event Summary for Grocery Store Example

Simulation Table

31

▪ When an event-scheduling algorithm is
computerized, only one snapshot (the current one or
partially updated one) is kept in computer memory

— A new snapshot can be derived only from the previous
snapshot, newly generated random variables, and the
event logic

— The current snapshot must contain all information
necessary to continue the simulation

Manual vs. Computer Simulation

32

▪ Suppose the simulation analyst desires to estimate

— mean response time, and,

— mean proportion of customers who spend 4 or more
minutes in the system (i.e., waiting in line + checkout time)

▪ It is necessary to expand the previous model to
represent the individual customers explicitly:

— Customer entity with arrival time as an attribute will be
added to the list of components

— Customer entities will be stored in a list to be called
‘Checkout Queue’ as C1, C2, C3,

33

Scenario 2 in Grocery Store Example

Collected Statistics:

▪ Three new cumulative statistics will be collected:

—𝑆: the sum of customer response times for all customers
who have departed by the current time

—𝐹: the total number of customers who spend 4 or more
minutes at the checkout counter

—𝑁𝐷: the total number of departures up to the current
simulation time

Statistics for Grocery Store Example

34

Updating Statistics:

▪ At time 18, when the departure event (D, 18, C3) is being
executed, the response time for customer C3 is computed as:

Response time = clock time - attribute ‘time of arrival’
= 18 -14 = 4 minutes

▪ Then 𝑆 is incremented by 4 minutes, and 𝐹 and 𝑁𝐷 by one
customer

35

Computing Statistics for Grocery Store Example

▪ Input parameters:

Summary Table for Grocery Store Example

Interarrival Times 0 8 6 1 8

Service Times 4 1 4 3 5

Simulation Table

Clock
System State

Checkout Queue Future Event List
Statistics

𝐿𝑄(𝑡) 𝐿𝑆(𝑡) 𝑆 𝑁𝐷 𝐹

0 0 1 (C1, 0) (D, 4, C1), (A, 8, C2), (E, 60) 0 0 0

4 0 0 (A, 8, C2), (E, 60) 4 1 1

8 0 1 (C2, 8) (D, 9, C2), (A, 14, C3), (E, 60) 4 1 1

9 0 0 (A, 14, C3), (E, 60) 5 2 1

14 0 1 (C3, 14) (A, 15, C4), (D, 18, C3), (E, 60) 5 2 1

15 1 1 (C3, 14), (C4, 15) (D, 18, C3), (A, 23, C5), (E, 60) 5 2 1

18 0 1 (C4, 15) (D, 21, C4), (A, 23, C5), (E, 60) 9 3 2

36

▪ Concepts in discrete-event simulation
— Terminology and concepts
— Two pedagogical examples

▪ Components of discrete-event simulation
— Time advance approaches
— Event scheduling approach

▪ Manual simulation
— Grocery store example

▪ Simulation program
— Simulation of queueing systems
— Infinite and finite population model
— Tandem queue with blocking

▪ Verification and validation of simulation models

Outline

37

▪ Initialization
—Initialize clock to zero

—Initialize state variables and

statistical counters

—Initialize event list (with already

known future events)

Generic Simulation Program (1 of 4)

38

▪ Main loop (repeat until the condition for terminating
the simulation is met)
—Determine the most imminent event and

remove it from the event list (suppose

this event is of type i)

—Advance clock to the time of this event

—Invoke event routine for type i

Generic Simulation Program (2 of 4)

39

▪ Event routine (a separate routine for each event
type)
—Update state variables

—Update statistical counters

—When required, add future events to the

event list

Generic Simulation Program (3 of 4)

40

▪ Report generator
—Invoked when simulation has terminated

—Compute and output performance measures

of interest

Generic Simulation Program (4 of 4)

41

1. Single server infinite population

2. Single server finite population

3. Tandem queue

4. Tandem queue with blocking

5. Closed network model

Simulation of Queueing Systems

42

Components of a Queueing System

1. Arrival
process

5. Service
discipline

2. Service time
distribution

4. Waiting
positions 3. Number of

servers

43

▪ Arrival time

— Time at which a customer arrives at a service facility

▪ Inter-arrival time

— Time between two successive arrivals to a service facility

▪ Arrival rate

— Number of arrivals per unit of time

Arrival Definition

44

Timing Diagram

45

▪ Define:

▪ Mean inter-arrival time

▪ Arrival rate

Relationship between Arrival Rate and Inter-arrival Time

1
n
j jL y 

1

mean interarrival time

n

L
 

L

n


46

▪ Service requirement - in units of work
— Ex 1: CPU - unit of work is “instruction”

— Ex 2: communication channel - unit of work is “bit”

▪ Server capacity - in units of work per second
— Ex 1: CPU - server capacity is in “number of instructions

executed per second”

— Ex 2: communication channel - server capacity is in “number of
bits transmitted per second”

▪ Service time =

▪ Service rate
— Number of customers served per second

(assuming no idle time)

Service Definition



service requirement

server capacity

47

Timing Diagram

48

▪ Define:

▪ Mean service time

▪ Service rate

Relationship between Service Rate and Service Time

1
n
j jL x 

L

n


1

mean service time

n

L
 

49

Examples:

▪ First-Come-First-Serve (FCFS) (a.k.a. FIFO)

▪ Last-Come-First-Serve (LCFS)

▪ Round-Robin (RR) with a fixed quantum
Infinitesimal quantum  Processor Sharing (PS)

▪ Shortest Job First (SJF)

▪ Shortest Remaining Processing Time (SRPT)

▪ And many more…

Service Disciplines

50

▪ Response time
— Elapsed time from arrival to departure

▪ Waiting time
— Time spent in queue

▪ Number of customers in system

▪ Number of customers in queue

▪ Server utilization
— Proportion of time that the server is busy

▪ Throughput
— Rate at which customers leave the service facility after

completing service

Typical Performance Measures

51

 Proportion of time that the server is busy

— Total busy time =

— U = proportion of time server is busy =

Note: U ≤ 1

Utilization

• • •

0
Time

s1 s2 s3 s4 sn

L

 

n

j js
1

 

n

j js
L 1

1

52

 Rate at which customers leave a service facility after
completing service

— Throughput:

𝑹 =
𝒏

𝑳
where n is the number of customers served in time L

Throughput

53

▪ Infinite population model

Single Server Queue Example (ssq3.c)

54

▪ Number of users of the service facility is large
(potentially infinite)

▪ Pattern of customer arrivals is based on combined
behavior of the customers, and is assumed to be
independent of the state of the system

Customer Arrivals - Infinite Population Model

55

Single Server Queue Example

Events arrival start service departure

Activities waiting receiving
in queue service

time

56

▪ Assumptions
— Inter-arrival times are independent of system state

— Inter-arrival times are iid (independent and identically
distributed)

— Service times are independent of system state

— Service times are iid

— FCFS scheduling

— System is empty at time zero

— Arrival of first customer occurs after the first inter-arrival
time

— Simulation terminates when the m-th customer starts
service

Single Server Queue Model

57

▪ Input parameters

— Inter-arrival time distribution (e.g., exponential)

— Service time distribution (e.g., uniform)

▪ Performance measures of interest

— Mean waiting time in queue, ഥ𝑤

— Mean number of customers in system, ത𝑛

Single Server Queue Model

58

▪ State variables
—status = server status (busy or idle)

—n = number of customers in system

▪ Statistical counters
—nw = number of waiting times accumulated

—sw = sum of accumulated waiting times

—sa = sum of accumulated areas (for calculating ത𝑛)

—last_event = time of last event when accumulating
area

Single Server Queue Model

59

▪ Lists

— event_list

— queue

▪ Event types

— type 1: arrival

— type 2: start_service

— type 3: departure

Single Server Queue Model

60

▪ Initialization
—clock = 0

—status = idle

—n = 0

—nw = sw = 0

—last_event = 0

—sa = 0

— Initialize queue to empty

— Initialize event_list to empty

— Determine inter_t, the first interarrival time

— Schedule an arrival event to occur at clock +
inter_t

Single Server Queue Model (1 of 4)

61

▪ Main loop (repeat until the condition for terminating
the simulation is met)

— Determine the most imminent event and remove it from
the event list (suppose this event is of type i and occurs at
time t)

—clock = t

—sa = sa + (clock - last_event)⋅ n

—last_event = clock

— Invoke event routine for type i

Single Server Queue Model (2 of 4)

62

▪ arrival event – type 1
— Determine inter_t, the interarrival time between the

current and next arrivals

— Schedule an arrival event to occur at clock +
inter_t

—n = n + 1

— Enter arriving customer to end of queue, and save its time
of arrival (given by clock)

— If status is idle, invoke routine for start_service
event

Single Server Queue Model (3a of 4)

63

▪ start_service event – type 2

— Remove customer from front of queue, and retrieve time of
arrival (t_arrival)

—nw = nw + 1

—sw = sw + (clock - t_arrival)

— If nw = m (condition for terminating simulation), exit main
loop

—status = busy

— Determine serv_t, the customer service time

— Schedule a departure event to occur at clock + serv_t

Single Server Queue Model (3b of 4)

64

▪ departure event – type 3
—n = n - 1

—status = idle

— If n > 0, invoke event routine for start_service
event

Single Server Queue Model (3c of 4)

65

▪ Report generator
— Mean waiting time: ഥ𝑤 = sw/nw

— Mean no. of customers in system: ത𝑛 = sa/clock

— Output results

Single Server Queue Model (4 of 4)

66

server

queue
0 1 3 4 6 9 10 11

time

C1

C1

C1

C2 C3 C4

C2

C2

C3

C3

C4

number of
customers
in system

0 1 3 4 6 9 10 11

1

2

time

Cj - customer j

arrival

departures

start service

Sequence of Events

67

clock event status n event list queue nw sw

0 -- idle 0 (A, 1) empty 0 0

1 A busy 1 (A, 3), (D, 4) empty 1 0

3 A busy 2 (D, 4), (A, 6) (C2, 3) 1 0

4 D busy 1 (A, 6), (D, 9) empty 2 1

6 A busy 2 (D, 9), (A, 11) (C3, 6) 2 1

9 D busy 1 (D, 10), (A, 11) empty 3 4

10 D idle 0 (A, 11) empty 3 4

11 A busy 1 (A, 15), (D, 17) empty 4 4

mean waiting time = sw/nw = 1.0

Notation: A - arrival event, D - departure event

(Cj, x) - customer j in queue, time of arrival of this customer is x

n - number of customers in system
68

Manual Trace of Single Server Queue Example

▪ Finite population model

Single Server Queue Example

69

▪ Number of users is not large

▪ The behavior of each user is modeled explicitly as far
as arrival pattern is concerned

▪ Arrival rate is dependent on the state of the system

▪ Definition

— Think time: elapsed time from completion of previous
request to submission of next request

Finite Population Model

70

Finite Population Model

Events arrival start service departure arrival

Activities waiting receiving think
in queue service time

time

71

▪ Assumptions

— Service times are iid and independent of system state

— Think times are iid and independent of system state

— FCFS scheduling

— System is empty at time zero

— For each of the N users, the first request is submitted after a
think time

— Subsequent arrivals depend upon prior service completions

— Simulation terminates at time term_sim

Finite Population Model

72

▪ Initialization
—clock = 0

—status = idle

—n = 0

— Initialize queue to empty

— Initialize event_list to empty

— for user j (j = 1 to N)
Determine think_t, a think time of user j,
and schedule an arrival event at clock + think_t

end for

— Schedule an end_simulation event at term_sim

Finite Population Model

73

▪ arrival event
—n = n + 1

— Enter arriving customer to end of queue

— If status is idle, invoke routine for start_service
event

▪ start_service event

— Remove customer from front of queue

—status = busy

— Determine serv_t, the service time of customer

— Schedule a departure event to occur at clock +
serv_t

Finite Population Model

74

▪ departure event
—n = n - 1

—status = idle

— Determine think_t

— Schedule an arrival event at clock + think_t

— If n > 0, invoke event routine for start_service

▪ end-simulation event
—exit main loop

Finite Population Model

75

▪ Subsystems and interactions
—M subsystems – one for each stage

— A departure from stage i becomes an arrival
to stage i+1 (i = 1 to M-1)

Example: Tandem Queue – M Stages

76

▪ Use event routines for single server queue model for
each of the M stages

▪ Modifications to implement tandem queue:
— departure event: for stage i (i = 1 to M-1)

- add the step

▪ Invoke routine for arrival event at stage i+1

— arrival event: for stage i (i = 2 to M)

- do not schedule the next arrival event!

Simulation Program

77

Example: Tandem Queue with Blocking

78

▪ Two stages

▪ Finite waiting room at stage 2 (number of customers
in system < K)

▪ Blocking

— Server 1 is blocked if a customer completing service at
stage 1 finds no queuing space at stage 2

Tandem Queue with Blocking

79

▪ Subsystems and interaction

— 2 subsystems – one for each stage

— Server 1 is blocked if a customer completing service at
stage 1 finds no queuing space at stage 2

— If server 1 is in the “blocked” state, it becomes “not
blocked” when a departure occurs at stage 2

— A departure from stage 1 becomes an arrival to stage 2

Tandem Queue with Blocking

80

▪ Use event routines for single server queue (infinite
population model) for each of the 2 stages

▪ Modifications to implement tandem queue with
blocking:

— Add state variable b

▪ b = 1 if server 1 is blocked and 0 if server 1 is not blocked

— Initialization : add the step

▪ b = 0

Simulation Program

81

▪ Modifications (cont.):

— start_service event at stage 1: add the step

▪ Schedule an end_service event at stage 1

instead of a departure event at stage 1

— end_service event at stage 1: add the step

▪ If number in system at stage 2 < K

invoke routine for departure event at

stage 1

▪ else b = 1

Simulation Program

82

▪ Modifications (cont.):

— departure event at stage 1: add the step

▪ Invoke routine for arrival event at stage

2

— arrival event at stage 2:

▪ Do not schedule the next arrival event

— departure event at stage 2: add the step

▪ If b = 1, then b = 0 and invoke routine

for departure event at stage 1

Simulation Program

83

Example: Closed Network Model

84

▪ Four subsystems, one for each server

▪ Interaction is defined by transition probabilities

— A customer departing from server 1 has

▪ 50% probability of arriving at server 2

▪ 30% probability of arriving at server 3

▪ 20% probability of arriving at server 4

— A customer departing from server 2, 3 or 4 has 100%
probability of arriving at server 1

Subsystems and Interaction

85

▪ Single server queue model for each subsystem with
modifications to model the interaction

▪ Initialization
—clock = 0

—for i = 1 to 4

▪ Initialize queue(i) to empty

▪ status(i) = idle

▪ n(i) = 0

— Initialize event_list to empty

— Enter N customers at end of queue(1)

—n(1) = N

— Invoke start_service event at server 1

Simulation Program

86

▪ Departure event from server 1: add the steps

— Determine k, the ID of the next server for the departing
customer (k = 2 : 50%, k = 3 : 30%, k = 4 : 20%)

— Invoke arrival event to server k

▪ Departure event from server 2, 3, or 4: add the step

— Invoke arrival event to server 1

▪ Arrival event at server 1, 2, 3, or 4

— Do not schedule the next arrival event

Simulation Program

87

▪ Concepts in discrete-event simulation
— Terminology and concepts
— Two pedagogical examples

▪ Components of discrete-event simulation
— Time advance approaches
— Event scheduling approach

▪ Manual simulation
— Grocery store example

▪ Simulation program
— Simulation of queuing systems
— Infinite and finite population model
— Tandem queue with blocking

▪ Verification and validation of simulation models

Outline

88

Verification and Validation

System Model
Abstraction

Validation Verification

= Simulation
Program

89

▪ Increase the level of confidence in the correctness of
simulation program

▪ Approaches

— Use a “trace” to debug simulation program

▪ Trace is obtained by printing state variables, statistical
counters, etc., after each event

— Verify simulation output using analytic results

Verification

90

▪ Use fundamental results of queuing systems

▪ Examples

— For any subsystem, mean arrival rate, mean number in
system, and mean response time must be consistent with
Little’s formula

Fundamental Results

91

▪ Check results for cases where analytic results are
known

▪ Examples

— Simulation model: open networks with exponential
interarrival time distribution and uniform service time
distribution

— Run simulation for the case of exponential service time
distribution (analytic solution is available)

— Verify if the simulation output is consistent with known
analytic results

Analytic Results

92

▪ Model should be “good enough” (subjective)

▪ Seek expert opinion on system components that
need to be carefully modeled, e.g., bottleneck

▪ A model should be valid for the performance
measures

▪ The most valid model may not be the most cost-
effective model

Validation

93

1. Build a model with high face validity

— Appears to be reasonable to people who are
knowledgeable about the system being modeled

2. Validation of model assumptions

— Structural assumptions: entities, attributes, sets, etc.

— Data assumptions

▪ Collect reliable data

▪ Identify appropriate distribution

▪ Validate the assumed distribution

Three Step Approach to Validation

94

3. Validation of input-output relationship

— Model should be able to predict system behavior under
existing conditions

Three Step Approach to Validation

Input Data
(from system
measurement)

Model Output Data
(from model)

Output Data
(from system
measurement)

= ?

Could be done using historical data collected
for validation purposes.

95

