CPSC 531:
System Modeling and Simulation

UNIVERSITY OF

CALGARY Carey Williamson

Department of Computer Science
University of Calgary
Fall 2017

Recap: Simulation Model Taxonomy

UNIVERSITY OF

CALGARY

system model

deterministic\ stochastic
static dynamic static dynamic
. Monte Carlo simu!atioq_,-»*”\
continuous| | discrete continuous | discrete

discrete-event simulation

Recap: DES Model Development

UNIVERSITY OF

CALGARY

= How to develop a simulation model:
Determine the goals and objectives
Build a conceptual model

Convert into a specification model
Convert into a computational model

A S A

Verify the model
6. Validate the model

= Typically an iterative process

Overview of DES Module

UNIVERSITY OF

CALGARY

= Develops a common framework (and terminology)
for the modeling of complex systems

= Covers the basic building blocks for all discrete-event
simulation models

= |ntroduces and explains the fundamental concepts
and methodologies underlying all discrete-event
simulation packages:

— These concepts and methodologies are not tied to any
particular simulation package

Outline

UNIVERSITY OF

CALGARY

= Concepts in discrete-event simulation
— Terminology and concepts
— Two pedagogical examples
= Components of discrete-event simulation
— Time advance approaches
— Event scheduling approach
= Manual simulation
— Grocery store example
= Simulation program
— Simulation of queuing systems
— Infinite and finite population model
— Tandem queue with blocking

= Verification and validation of simulation models

Outline

UNIVERSITY OF

CALGARY

= Concepts in discrete-event simulation
— Terminology and concepts
— Two pedagogical examples

Concepts in Discrete-Event Simulation (1 of 2)

UNIVERSITY OF

CALGARY

= Model: an abstract representation of a (real) system

= System: a collection of entities that interact together
over time (e.g., people, machines, CPU, Web server)

= System state: a collection of variables that contain all
the information necessary to adequately describe
the system at any time (e.g., occupancy)

= Entity: any object or component in the system (e.g., a
server, a customer, a machine)

= Attributes: the properties of a given entity

= |jst: a collection of associated entities, ordered in
some logical fashion (e.g., sets, queues)

Concepts in Discrete-Event Simulation (2 of 2)

UNIVERSITY OF

CALGARY

= Event: an instantaneous occurrence that changes the state of
a system (e.g., an arrival of a new customer)

= Event list: a list of event notices for future events, ordered by
time of occurrence, also called the future event list (FEL)

= Activity (unconditional wait): a duration of time of specified
length that is known when it begins (e.g., a service time)

= Delay (conditional wait): a duration of time of unspecified
indefinite length, which is not known until it ends (e.g.,
customer delay while waiting in line)

= Clock: a variable representing simulated time, which can be
either continuous or discrete

Note: different commercial simulation packages use different
terminology for the same or similar concepts

Key Concepts in Discrete-Event Simulation

UNIVERSITY OF

CALGARY

= An activity represents a service time, an inter-arrival time, or
any processing time whose duration has been defined or
characterized by the modeler:

— An activity’s duration may be specified as:
= Deterministic or stochastic

= A function depending on system variables and/or entity
attributes

— Duration is not affected by the occurrence of other events

= A delay’s duration is determined by current system conditions
(not specified by the modeller ahead of time):
— For example, a customer’s delay in a waiting line may be dependent

on the number and duration of service of other customers ahead in
line, and whether a server has a failure (and repair time) or not

Example 1: ABC Call Center

CALGARY

A computer technical support center with personnel taking
calls and providing service:

— Three support staff: Alice, Bob, Chris (multiple support channel)
— A simplifying rule: alphabetical tie-breaker if > 1 staff are idle

" Goal: to find out how well the current arrangement
works in terms of the response time of the system

= Random variables:
— Arrival time between calls

— Service time (different distributions for Alice, Bob, and Chris)

States in ABC Call Center Example

UNIVERSITY OF

CALGARY

The ABC Call Center System is a discrete-event model with
the following components:

= System state:

— The number of callers waiting to be served at time t
— Indicator that Alice is idle or busy at time t

— Indicator that Bob is idle or busy at time t

— Indicator that Chris is idle or busy at time t

Entities: neither the caller nor the servers need to be

explicitly represented, except in terms of the state
variables, unless certain per-caller or per-server statistics

are desired

UNIVERSITY OF

CALGARY

= Events:
— Arrival of a call
— Service completion by Alice
— Service completion by Bob
— Service completion by Chris

= Activities:
— Inter-arrival time
— Service time by Alice
— Service time by Bob
— Service time by Chris

= Delay: a caller’s wait in queue until Alice, Bob, or Chris
becomes free

Events in ABC Call Center Example

12

Example 2: Pancake Manor

UNIVERSITY OF

CALGARY

A pancake restaurant in an old church in Brisbane, Australia:
— Host/hostess for seating of customers (possible waiting here)
— Waiter/waitress for ordering/bringing food and beverages
— Kitchen and cook(s) for preparing food (possible queueing too!)
— Cashier for payment and departure

= Goal: to find out how many staff (and tables) to have to
keep the response time of the system reasonable

= Random variables:
— Arrival times of customers
— Sizes of groups
— Time of day
— Service times for ordering, eating, payment, etc.

&

UNIVERSITY OF

CALGARY

Example 2: Pancake Manor

14

States in Pancake Manor Example

UNIVERSITY OF

CALGARY

The Pancake Manor restaurant is a discrete-event model
with the following components:

= System state:
— The number of customers waiting to be seated at time t
— The number of customers waiting to order at time t
— The number of customers waiting for food at time t
— The number of customers eating at time t
— The number of customers waiting to pay at time t
— The number of available/occupied tables at time t

= Entities: customers; host/hostess; waiter/waitress; cooks
in kitchen; tables in restaurant; other?

UNIVERSITY OF

CALGARY

= Events:
— Arrival of a customer (or group of customers)
— Service completion by host/hostess
— Service completion by waiter/waitress
— Service completion by cook
— Service completion by cashier

= Activities:
— Inter-arrival time
— Service time by host/hostess
— Service time by waiter/waitress
— Service time by cook
— Service time by cashier

= Delay: a caller’s wait for seating, ordering, eating, paying, etc.

Events in Pancake Manor Example

16

UNIVERSITY OF

CALGARY

Components of discrete-event simulation
— Time advance approaches
— Event scheduling approach

Outline

17

Components of a Simulation

UNIVERSITY OF

CALGARY

= |n DES simulation:
— The simulation is driven by events
— The simulation time advances based on sequence of events
— System state changes with events

= Requirements:
— Time advance algorithm

— Event scheduling
— Event processing

Update Remove event from
system /i‘dvfnc‘; FEL and execute
snapshot ¢, | LS00k L event, i =/ +1

: i Repeat i : ,

Time Advance Approaches

UNIVERSITY OF

CALGARY

The mechanism for advancing simulation time and guaranteeing
that all events occur in correct chronological order

= General approaches:

1. Time-stepping approach (fixed time increment):
— Also known as the “activity scanning” approach

— At each clock advance, the conditions for each activity are checked,
and if the conditions are true, then the corresponding activities begin

2. Event-scheduling approach (variable time advance):
— Concentrates on events and their effect on system state

— The simulation clock is advanced to the time of the next imminent
event on the FEL

19

Time-Stepping Approach

UNIVERSITY OF

CALGARY

= At any given time t, the list of all pending future events is
scanned to determine which ones are applicable

= FEL not strictly required, nor does it need to be ordered

= Main challenge is getting the time step appropriate
— Too small: high overhead; lots of scanning; not much happens
— Too large: too many events applicable at once

= Real systems often have highly-varying times between events

= Time-stepping approach is simple in concept, but often slow
in execution (i.e., high overhead)

= Suitable only for simulating small systems with well-defined
inherent time steps (e.g., mortgage.c, fluid flow)

Event-Scheduling Approach

UNIVERSITY OF

CALGARY
= At any given time t, the future event list (FEL) contains all

previously scheduled future events and their associated event
times (t1,ts, ...)

= FEL is ordered by event time, and the event times satisfy:
t<tyi <t, <--<t,wheretisthevalue of the Clock.

21

&) Event-Scheduling Approach

UNIVERSITY OF

CALGARY

Old system snapshot at time t

CLOCK System i Future Event List
State
t {5, 1, 6) (3, t;) — Type 3 event to occur at t,

(1, t;) — Type 1 event to occur at t,
(1, t3) = Type 1 event to occur at t;

(2, t,) — Type 3 event to occur at t,

New system snapshot at time t;

Step 1 -Remove the event notice for the imminent event (event 3, time t;) from FEL.

Step 2 —Advance CLOCK to imminent event (i.e., advance CLOCK from t to t;).

Step 3 —Execute imminent event: update system state, change entity attributes, and set membership as needed.

Step 4 —Generate future events (if necessary) and place their event notices on FEL, ranked by event time.
(Example: Event 4 to occur at time t*, where t; < t < ts.)

Step 5 —Update cumulative statistics and counters.

New system snapshot at time t1

CLOCK System — Future Event List
State
ty (S, 1. 5) (1, t;) — Type 1 event to occur at t;

(4, t') - Type 4 event to occur at t
(1, t3) — Type 1 event to occur at t3

(2, t,) — Type 3 event to occur at t, 22

List Processing

UNIVERSITY OF

CALGARY

* The management of a list

— The major list processing operations performed on a FEL are:
= Removal of the imminent event
= Addition of a new event to the list
= QOccasionally removal of some event (cancellation of an event)

— Efficiency of search within the list depends on the logical
organization of the list and how the search is conducted

= Data structure for FEL? Choice depends on system size:
— Variable(s)
— Arrays
— Files
— Ordered linked list
— Priority queue
— Binary heap

— Calendar queue
23

Future Events

UNIVERSITY OF

CALGARY

= Arrival event:

— For example, at time 0, the first arrival event is generated and is
scheduled on the FEL. When the clock eventually is advanced to
the time of this first arrival, a second arrival event is generated.

= Service completion event:

— Triggered only on the condition that a customer is present and a
server is free

= Stopping event, E:

— At time O: schedule a stop simulation event at a specified future
time T,

— Run length T, is determined by the simulation itself. Generally,
Te is the time of occurrence of some specified event E (e.g.,
completion of 1000t customer) or condition (e.g., relative
change in estimate of 1, or standard deviation of queue size)

L

e |

I e |
t 1 //// ‘,.“ 1
i ////Outllne &

= Manual simulation
— Grocery store example

25

Example 3: Grocery Store

UNIVERSITY OF

CALGARY

Grocery Store with single checkout
= Single-channel queue:

— The system consists of those customers waiting plus the
one (if any) checking out

— For this example, a stopping time of 60 minutes is set

_—————

|| >+O

EE

Customer being
checked out

>—+O
>—+O
>—+O

~ < -

Customers waiting
in checkout line

26

Components of Grocery Store Example

UNIVERSITY OF

CALGARY

= Model components:

— System state:

= LQ(t): # of customers waiting in line at time t (excluding the
customer being checked out)

= LS(t): # of customer being checked out (1 or 0) at time ¢t

— Entities: the server and customers are not explicitly modeled,
except in terms of the state variables

— Events: arrival (A), departure (D), stopping event (E)

— Event notices (event type, event time):
= (A, t) representing an arrival event to occur at future time t
= (D, t) representing a customer departure at future time ¢t
= (E, 60) representing the simulation stop event at future time 60

— Activities: inter-arrival time and service time
— Delay: customer time spent in waiting line

27

Arrivals in Grocery Store Example

UNIVERSITY OF

CALGARY

= Event logic: execution of arrival event

Arrival event
occurs at CLOCK = ¢

Step 3 Step 3

Increase LQ(1)
by 1

Set LS(1) = 1

Step 4

Generate service time s*;
schedule new departure
event at time ¢ + s*

Y Y Step 4

Generate interarrival time a*;
schedule next arrival
event at time ¢ + a*

y Step5

Collect statistics

Y

Return control to
time-advance routine
to continue simulation 28

UNIVERSITY OF

CALGARY

Departures in Grocery Store Example

= Event logic: execution of departure event

Step 3

Set LS(1) = 0

Departure event

occurs at CLOCK =1¢

No

Is
LQ@) >0
?

Yes

Step 3
Reduce LQO(¢)

Y

by 1

Step 4

Generate service time s%;
schedule new departure
event at time ¢ + s*

Y l Step 5

Collect statistics

|

Return control to
time-advance routine
to continue simulation

29

Scenario 1 in Grocery Store Example

UNIVERSITY OF

CALGARY

= |nitial conditions are: the first customer arrives at
time 0 and begins service

= Only two statistics:
— B: total server busy time (server utilization = B/Tg)
— MaxQ: maximum queue (checkout line) length observed

= |nput parameters:

Interarrival Times 0 8 6 1 8

Service Times 4 1 4 3 5

30

UNIVERSITY OF

Event Summary for Grocery Store Example

CALGARY
System State Cumulative Statistics
Clock LQ(t) LS(t) Future Event List Comment B MQ

First A occurs: (@* = 8),

0 0 1 (D, 4), (A, 8), (E, 60) schedule next A; (s*=4) 0 0
Schedule first D

4 0 0 (A, 8), (E, 60) First D occurs: (D, 4) 4 0
Second A occurs: (A, 8);

8 0 1 (D, 9), (A, 14), (E, 60) (@* = 6) Schedule next A; 4 0
(s* = 1) Schedule next D

9 0 0 (A, 14) (E, 60) Second D occurs: (D, 9) 5 0
Third A occurs: (A, 14);

14 0 1 (A, 15) (D, 18) (E, 60) (s* = 4) Schdeule next D 5 0
Fourth A occurs: (A, 15)

15 1 1 (D, 18), (A, 23), (E, 60) (Customer delayed) 6 1
Third D occurs: (D, 18);

18 0 1 (D, 21) (A, 23) (E, 60) (s* = 3) schedule next D 9 1

Simulation Table

31

Manual vs. Computer Simulation

UNIVERSITY OF

CALGARY

= When an event-scheduling algorithm is
computerized, only one snapshot (the current one or
partially updated one) is kept in computer memory

— A new snapshot can be derived only from the previous
snapshot, newly generated random variables, and the
event logic

— The current snapshot must contain all information
necessary to continue the simulation

gvessTy oo Scenario 2 in Grocery Store Example

= Suppose the simulation analyst desires to estimate

— mean response time, and,

— mean proportion of customers who spend 4 or more
minutes in the system (i.e., waiting in line + checkout time)

" |tis necessary to expand the previous model to
represent the individual customers explicitly:

— Customer entity with arrival time as an attribute will be
added to the list of components

— Customer entities will be stored in a list to be called
‘Checkout Queue’ as C1, C2,C3,

UNIVERSITY OF

CALGARY

Collected Statistics:

= Three new cumulative statistics will be collected:

— §: the sum of customer response times for all customers
who have departed by the current time

— F: the total number of customers who spend 4 or more
minutes at the checkout counter

— Np: the total number of departures up to the current
simulation time

Statistics for Grocery Store Example

34

Computing Statistics for Grocery Store Example

UNIVERSITY OF

CALGARY

Updating Statistics:

= Attime 18, when the departure event (D, 18, C3) is being
executed, the response time for customer C3 is computed as:

Response time = clock time - attribute ‘time of arrival’
=18 -14 = 4 minutes

= Then S is incremented by 4 minutes, and F and Np by one
customer

35

UNIVERSITY OF

CALGARY

Summary Table for Grocery Store Example

= |nput parameters:

Interarrival Times

Service Times

System State Statistics
Clock Lo | LS(D) Checkout Queue Future Event List N, F
0 0 1 (C1,0) (D, 4, C1), (A, 8, C2), (E, 60) 0
4 0 0 (A, 8, C2), (E, 60) 1 1
8 0 1 (C2, 8) (D, 9, C2), (A, 14, C3), (E, 60) 1 1
9 0 0 (A, 14, C3), (E, 60) 2 1
14 0 1 (C3, 14) (A, 15, C4), (D, 18, C3), (E, 60) 2 1
15 1 1 (C3, 14), (C4, 15) (D, 18, C3), (A, 23, C5), (E, 60) 2 1
18 0 1 (C4, 15) (D, 21, C4), (A, 23, C5), (E, 60) 3 2

Simulation Table

36

UNIVERSITY OF

CALGARY

= Simulation program
— Simulation of queueing systems
— Infinite and finite population model
— Tandem queue with blocking

Outline

37

UNIVERSITY OF

CALGARY

= |nitialization

—TInitialize clock to zero

—TInitialize state wvariables and

statistical counters

—Initialize event list
known future events)

(with already

Generic Simulation Program (1 of 4)

38

Generic Simulation Program (2 of 4)

UNIVERSITY OF

CALGARY

= Main loop (repeat until the condition for terminating
the simulation is met)

—Determine the most imminent event and
remove 1t from the event list (suppose
this event 1s of type 1)

— Advance clock to the time of this event

— Invoke event routine for type 1

39

UNIVERSITY OF

CALGARY

= Event routine (a separate routine for each event
type)
—Update state wvariables
—Update statistical counters

—When required, add future events to the
event list

Generic Simulation Program (3 of 4)

40

UNIVERSITY OF

CALGARY

= Report generator
— Invoked when simulation has terminated

—Compute and output performance measures
of interest

Generic Simulation Program (4 of 4)

41

UNIVERSITY OF

CALGARY

Single server infinite population
Single server finite population

. Tandem queue

Tandem queue with blocking

GoR W N e

Closed network model

Simulation of Queueing Systems

42

Components of a Queueing System

UNIVERSITY OF

CALGARY

2. Service time

1. Arrival
process distribution
_______) N .

! -|— \ 5. Service
Qr $ $ o P EET discipline
{ A A A X / O O O \‘ 5 O E
1 I > | 1 — 1 1
v O 0 O j_ j_ j_ I : j_ : '

S5 VAN o]
“““] T~ I]
4. Waiting \ [
positions 3. Number of

servers

43

UNIVERSITY OF

CALGARY

= Arrival time

— Time at which a customer arrives at a service facility

* |nter-arrival time

— Time between two successive arrivals to a service facility

= Arrival rate

— Number of arrivals per unit of time

Arrival Definition

44

- L seconds >
time
Yi Y2 Ys ¥
i I % I I l
ap=0 a, a, as XX a1 a,
C1 C2 C3 Cn-l Cn

C, - customer j

a,- arrival time of C;

y; - interrarrival time between C,; and G

45

Relationship between Arrival Rate and Inter-arrival Time

UNIVERSITY OF

CALGARY
= Define:
. n
L=2.1Y,
| o L
= Mean inter-arrival time = H

1

, n
= Arrival rate = — - - _
L mean interarrival time

46

Service Definition

UNIVERSITY OF

CALGARY

= Service requirement - in units of work
— Ex 1: CPU - unit of work is “instruction”
— Ex 2: communication channel - unit of work is “bit”

= Server capacity - in units of work per second

— Ex 1: CPU - server capacity is in “number of instructions
executed per second”

— Ex 2: communication channel - server capacity is in “number of
bits transmitted per second”

service requirement
server capacity

= Service time =

= Service rate

— Number of customers served per second
(assuming no idle time)

= L seconds

C, - customer]

X; - service time of Cj

b, - time at which C; starts service

48

Y, Relationship between Service Rate and Service Time

UNIVERSITY OF

CALGARY

= Define:

L

" Mean service time = —
N

N 1
L mean service time

= Service rate =

49

Service Disciplines

UNIVERSITY OF

CALGARY

Examples:

First-Come-First-Serve (FCFS) (a.k.a. FIFO)
Last-Come-First-Serve (LCFS)

Round-Robin (RR) with a fixed quantum
Infinitesimal quantum = Processor Sharing (PS)

Shortest Job First (SJF)
Shortest Remaining Processing Time (SRPT)

And many more...

50

UNIVERSITY OF

CALGARY

Response time

— Elapsed time from arrival to departure
Waiting time

— Time spent in queue

Number of customers in system
Number of customers in queue
Server utilization

— Proportion of time that the server is busy

Throughput

— Rate at which customers leave the service facility after
completing service

Typical Performance Measures

51

UNIVERSITY OF

CALGARY

m Proportion of time that the server is busy

n
— Total busy time = ijlsj

. . 1 1
— U = proportion of time server is busy = EZ

Note: U <1

n

J

Utilization

Time

=1Sj

52

Throughput

UNIVERSITY OF

CALGARY

B Rate at which customers leave a service facility after
completing service

— Throughput:

n
R=—
L

where n is the number of customers served in time L

53

UNIVERSITY OF

CALGARY

= |nfinite population model

Arrival

Queue
Server

Departure

|

Single Server Queue Example (ssq3.c)

54

UNIVERSITY OF

CALGARY

= Number of users of the service facility is large
(potentially infinite)

= Pattern of customer arrivals is based on combined
behavior of the customers, and is assumed to be
independent of the state of the system

Customer Arrivals - Infinite Population Model

55

UNIVERSITY OF

CALGARY

Events

Activities

Single Server Queue Example

arrival start service departure

| | | time —»

“— waiting " receiving —
in queue service

56

Single Server Queue Model

UNIVERSITY OF

CALGARY

= Assumptions
— Inter-arrival times are independent of system state

— Inter-arrival times are iid (independent and identically
distributed)

— Service times are independent of system state

— Service times are iid

— FCFS scheduling

— System is empty at time zero

— Arrival of first customer occurs after the first inter-arrival
time

— Simulation terminates when the m-th customer starts
service

UNIVERSITY OF

CALGARY

= |nput parameters
— Inter-arrival time distribution (e.g., exponential)
— Service time distribution (e.g., uniform)

= Performance measures of interest
— Mean waiting time in queue, w

— Mean number of customers in system, n

Single Server Queue Model

58

UNIVERSITY OF

CALGARY

= State variables
— status = server status (busy or idle)
—n = number of customers in system

= Statistical counters
—nw = number of waiting times accumulated
— sw = sum of accumulated waiting times
— sa = sum of accumulated areas (for calculating n)

—last event =time of last event when accumulating
area

Single Server Queue Model

59

UNIVERSITY OF

CALGARY

= Lists
—event_list

— gueue

= Event types
—type 1: arrival
—type 2: start_service
—type 3: departure

Single Server Queue Model

60

Single Server Queue Model (1 of 4)

UNIVERSITY OF

CALGARY

= |nitialization
—clock = 0
—status = 1idle
—n = 0
—nw = sw = 0
—last event = 0
—sa = 0
— Initialize queue to empty
— Initialize event 1list to empty
— Determine inter t, the firstinterarrival time

— Schedule an arrival event to occur at clock +
inter t

61

Single Server Queue Model (2 of 4)

UNIVERSITY OF

CALGARY

= Main loop (repeat until the condition for terminating
the simulation is met)

— Determine the most imminent event and remove it from
the event list (suppose this event is of type i and occurs at

time t)
—clock = t
—sa = sa t+ (clock - last event): n
—last event = clock

— Invoke event routine for type i

62

Single Server Queue Model (3a of 4

UNIVERSITY OF

CALGARY

= arrival event —type 1

— Determine inter t, theinterarrival time between the
current and next arrivals

— Schedule an arrival event to occur at clock +
inter t

—n =n + 1

— Enter arriving customer to end of queue, and save its time
of arrival (given by clock)

— If status is 1d1le, invoke routine for start service
event

)

63

Single Server Queue Model (3b of 4)

UNIVERSITY OF

CALGARY

= start_service event — type 2

— Remove customer from front of queue, and retrieve time of
arrival (t arrival)

—nw = nw + 1
—sw = sw + (clock - t arrival)

—Ifnw = m (condition for terminating simulation), exit main
loop

—status = Dbusy
— Determine serv t, the customer service time
— Schedule a departure event to occurat clock + serv t

64

Single Server Queue Model (3c of 4)

UNIVERSITY OF

CALGARY

= departure event —type 3
—n =n - 1
—status = idle

—Ifn > 0, invoke event routine for start service
event

65

UNIVERSITY OF

CALGARY

= Report generator
— Mean waitingtime: w = sw/nw
— Mean no. of customers in system: n

— QOutput results

sa/clock

Single Server Queue Model (4 of 4)

66

Sequence of Events

UNIVERSITY OF

CALGARY
C1 C2 C3
A
i T departures
server A Y A A
A
C1 C2 C3 C4 start service
] |
queue 0 *1 3 4 6 o 10 411 N
arrival
C1 C2 C3 C4
Gj - customer j Hme —»
number of |
customers
in system 1k
0 1 3 4 6 9 10 11

time 67

Manual Trace of Single Server Queue Example

UNIVERSITY OF

CALGARY
clock event status n event list queue nw Ssw
0 -- idle 0 (A, 1) empty 0 0
1 A busy 1 (A, 3),(D,4) empty 1 0
3 A busy 2 (D,4),(A,6) (C2,3) 1 0
4 D busy 1 (A, 6),(D,9) empty 2 1
6 A busy 2 (D,9),(A 11) (C3,6) 2 1
9 D busy 1 (D, 10), (A, 11) empty 3 4
10 D idle 0 (A, 11) empty 3 4
11 A busy 1 (A, 15), (D, 17) empty 4 4

mean waiting time = sw/nw = 1.0

Notation: A - arrival event, D - departure event
(Cj, x) - customer jin queue, time of arrival of this customer is x 68
n - number of customers in system

UNIVERSITY OF

CALGARY

= Finite population model

Single Server Queue Example

Terminals

69

Finite Population Model
CALGARY

= Number of users is not large

= The behavior of each user is modeled explicitly as far
as arrival pattern is concerned

= Arrival rate is dependent on the state of the system
= Definition

— Think time: elapsed time from completion of previous
request to submission of next request

70

Finite Population Model

UNIVERSITY OF

CALGARY

Events arrival start service departure arrival

| | | | time
| | | | —

. — e o .
Activities waiting receiving think

in queue service time

71

Finite Population Model

UNIVERSITY OF

CALGARY

= Assumptions
— Service times are iid and independent of system state
— Think times are iid and independent of system state
— FCFS scheduling

— System is empty at time zero

— For each of the N users, the first request is submitted after a
think time

— Subsequent arrivals depend upon prior service completions
— Simulation terminates at time term sim

72

Finite Population Model

UNIVERSITY OF

CALGARY

= |nitialization
—clock = 0
—status = 1idle
—n = 0
— Initialize queue to empty
— Initialize event 1list to empty

—foruserj (J = 1 to N)
Determine think t, athink time of user j,
and schedule an arrival eventat clock + think t

end for
—Schedule an end simulationeventatterm sim

73

UNIVERSITY OF

CALGARY

= arrival event
—n = n + 1
— Enter arriving customer to end of queue
— If status is 1d1le, invoke routine for start service
event
" sta rt_service event
— Remove customer from front of queue
—status = busy
— Determine serv _t, the service time of customer

— Schedule a departure event to occurat clock +
serv t

Finite Population Model

74

Finite Population Model

UNIVERSITY OF

CALGARY

= departure event
—n =n - 1
—status = idle
— Determine think t
—Schedule an arrival eventat clock + think t

—Ifn > 0, invoke event routine for start service

" end-simulation event

—exit mainloop

75

Example: Tandem Queue — M Stages

UNIVERSITY OF

CALGARY

Queue 1 Queue M
E— e 6 6 —Pp
Arrival Departure

= Subsystems and interactions
— M subsystems — one for each stage

— A departure from stage 1 becomes an arrival
tostage1+1 (1 = 1 to M-1)

76

Simulation Program

UNIVERSITY OF

CALGARY

= Use event routines for single server queue model for
each of the M stages

= Modifications to implement tandem queue:

— departure event: forstagei (1 = 1 to M-1)
— add the step

* |Invoke routine for arrival event at stage 1+1

—arrival event: forstage i (1 = 2 to M)
— do not schedule the next arrival event!

77

UNIVERSITY OF

CALGARY

Queue 1

—_—

Arrival

Example: Tandem Queue with Blocking

Queue 2

—>

Departure

Max: K customers

78

Tandem Queue with Blocking
CALGARY

= Two stages

* Finite waiting room at stage 2 (number of customers
in system < K)

= Blocking

— Server 1 is blocked if a customer completing service at
stage 1 finds no queuing space at stage 2

79

Tandem Queue with Blocking

UNIVERSITY OF

CALGARY

= Subsystems and interaction
— 2 subsystems — one for each stage

— Server 1 is blocked if a customer completing service at
stage 1 finds no queuing space at stage 2

— If server 1 is in the “blocked” state, it becomes “not
blocked” when a departure occurs at stage 2

— A departure from stage 1 becomes an arrival to stage 2

80

Simulation Program

UNIVERSITY OF

CALGARY

= Use event routines for single server queue (infinite
population model) for each of the 2 stages

= Modifications to implement tandem queue with
blocking:
— Add state variable b

= b = 1 ifserverlisblocked and O if server 1 is not blocked

— Initialization : add the step
b = 0

81

Simulation Program

UNIVERSITY OF

CALGARY

= Modifications (cont.):

— start_service event at stage 1: add the step

" Schedule an end service event at stage 1
instead of a departure event at stage 1

—end_service event at stage 1: add the step
= If number 1n system at stage 2 < K

invoke routine for departure event at
stage 1

"else b =1

82

Simulation Program

UNIVERSITY OF

CALGARY

= Modifications (cont.):

— departure event at stage 1: add the step

= Invoke routine for arrival event at stage
2

— arrival event at stage 2:

"= Do not schedule the next arrival event

— departure event at stage 2: add the step

= Tf b =1, then b = 0 and i1nvoke routine
for departure event at stage 1

83

Example: Closed Network Model

UNIVERSITY OF

CALGARY

N circulating customers

0.5 1.0

0.3 1.0

0.2 1.0

84

UNIVERSITY OF

CALGARY

= Four subsystems, one for each server
= |nteraction is defined by transition probabilities

— A customer departing from server 1 has
" 50% probability of arriving at server 2
= 30% probability of arriving at server 3
= 20% probability of arriving at server 4

— A customer departing from server 2, 3 or 4 has 100%
probability of arriving at server 1

Subsystems and Interaction

85

Simulation Program

UNIVERSITY OF

CALGARY

= Single server queue model for each subsystem with
modifications to model the interaction

= |nitialization
—clock = 0
—for 1 =1 to 4
= |nitialize queue (1) to empty
" status (1) = idle
"n(i) = 0
— Initialize event 1list to empty
— Enter N customers at end of queue (1)
—n(l) = N
—Invoke start service eventatserverl

86

Simulation Program

UNIVERSITY OF

CALGARY

= Departure event from server 1: add the steps

— Determine k, the ID of the next server for the departing
customer (k=2 :50%, k=3:30%, k=4:20%)

— Invoke arrival event to server k

= Departure event from server 2, 3, or 4: add the step

— Invoke arrival event to server 1

= Arrival event atserver 1, 2, 3,0r4

— Do not schedule the next arrival event

Verification and validation of simulation models

//7//// Y |
4

f
’/I ///

1
i
i

Outline

88

UNIVERSITY OF

CALGARY

System

Abstraction

Verification and Validation

A

Validation

Model

[
»

Simulation
Program

Verification

89

Verification

UNIVERSITY OF

CALGARY

= |ncrease the level of confidence in the correctness of
simulation program

= Approaches

— Use a “trace” to debug simulation program

= Trace is obtained by printing state variables, statistical
counters, etc., after each event

— Verify simulation output using analytic results

90

UNIVERSITY OF

CALGARY

= Use fundamental results of queuing systems
= Examples

— For any subsystem, mean arrival rate, mean number in
system, and mean response time must be consistent with
Little’s formula

Fundamental Results

91

Analytic Results

UNIVERSITY OF

CALGARY

= Check results for cases where analytic results are
known

= Examples

— Simulation model: open networks with exponential
interarrival time distribution and uniform service time
distribution

— Run simulation for the case of exponential service time
distribution (analytic solution is available)

— Verify if the simulation output is consistent with known
analytic results

Validation

UNIVERSITY OF

CALGARY

= Model should be “good enough” (subjective)

= Seek expert opinion on system components that
need to be carefully modeled, e.g., bottleneck

= A model should be valid for the performance
measures

= The most valid model may not be the most cost-
effective model

Three Step Approach to Validation

UNIVERSITY OF

CALGARY

1. Build a model with high face validity
— Appears to be reasonable to people who are
knowledgeable about the system being modeled
2. Validation of model assumptions

— Structural assumptions: entities, attributes, sets, etc.
— Data assumptions

= Collect reliable data

* |dentify appropriate distribution

= Validate the assumed distribution

&

UNIVERSITY OF

CALGARY

Three Step Approach to Validation

3. Validation of input-output relationship

— Model should be able to predict system behavior under

existing conditions

Input Data
(from system
measurement)

Y

Model

A4

Output Data
(from model)

=?

Output Data
(from system
measurement)

for validation purposes.

95

