
CPSC 531:
System Modeling and Simulation

Carey Williamson

Department of Computer Science

University of Calgary

Fall 2017

▪ Event List:
— Data structure containing the events that are scheduled to

occur in the future in the simulation

— Also contains meta-data associated with events

▪ Important to understand the requirements of an
event list, and its dynamics, in order to manage
events efficiently within a simulation

▪ In some simulations, event list management may
dominate the simulation execution time!

Event List Management

2

▪ Several important questions to consider when
contemplating the implementation of an event list:

— Is the maximum number of events fixed or variable?

— Is the event list management technique intended for one
specific simulation model, or general purpose in nature?

▪ Two critical operations in event list management:

— Insertion (also called enqueue) for scheduling an event

— Deletion (also called dequeue) for removing an event

▪ Often a tradeoff between these two operations!

Basic Questions

3

▪ Speed:

— Data structure and algorithms used for insertion and
deletion should have minimal execution time

— Efficient searching is the key (implies sorting, pointers, etc)

▪ Robustness:

— Should perform well for a wide range of scenarios

— Might exploit knowledge of specific simulation model

▪ Adaptability:

— Event list management should be “parameter free”

— Search time depends on length of list and time distribution
of events

Criteria for Event List Management

4

▪ Example: time-sharing computer system model
called the Think-Type-Receive model (or modified
version called Think-Tweet-Read in twit.c)

▪ Think time: uniformly distributed

▪ Typing time: uniformly distributed num of chars

▪ Receiving time: uniformly distribed num of chars

▪ Notes:

— Users spend most of the time thinking and/or typing

— Most of the events in the system are transmitting chars

Example: ttr.c

5

▪ Array implementation (unsorted)

▪ Linked list implementation (sorted, search from head)

▪ Linked list approach is 65-80% faster!

Example: ttr.c

6

Num Users N Number of Events Avg Search

5 9,902 5

10 20,678 10

50 101,669 50

100 201,949 100

Num Users N Number of Events Avg Search

5 9,902 1.72

10 20,678 2.73

50 101,669 10.45

100 201,949 19.81

▪ Array (sorted or unsorted)

— Suitable for small simulations with < 10 events on list

▪ Linked list

— Singly-linked or doubly-linked

▪ Multiple linked lists

— Uses k lists, each of which has a subset of the events

— Could dynamically adjust k to manage average length

▪ Binary tree

▪ Heap

▪ Calendar queue

Many Implementation Choices Possible

7

▪ A recursive data structure, where each node has at
most two children

▪ Tree is ordered, with smaller values to the left of the
root, and larger values to the right of the root

▪ Most imminent event would be the leftmost node

▪ Average case for insertion and deletion is O(log n)

▪ Worst case is O(n) for n events (linked list)

▪ Usually enforces a full or a complete binary tree

▪ More elaborate options include a balanced binary
tree or a splay tree

Binary Tree

8

Binary Tree Example

9

ID Time

0 0.001

1 2.551

2 8.041

3 6.748

4 9.039

5 5.691

6 5.449

7 1.940

8 7.887

9 2.305

0.001

2.305

7.887

1.940

5.449

5.691

9.0396.748

8.041

2.551

Complete Binary Tree Example

10

ID Time

0 0.001

1 2.551

2 8.041

3 6.748

4 9.039

5 5.691

6 5.449

7 1.940

8 7.887

9 2.305

0.001 2.305

7.887

1.940

5.449

5.691 9.039

6.748

8.0412.551

▪ A recursive data structure, in which the root node
has the lowest event time, and subtrees are heaps

▪ Most imminent event would be the root node

▪ Average case for deletion is O(1)

▪ Average case for insertion is O(log n)

▪ Usually enforces a complete binary tree model

▪ Need to maintain heap property upon each deletion
and/or insertion

▪ More elaborate options can balance the subtrees

Heap

11

Heap Example

12

ID Time

0 0.001

1 2.551

2 8.041

3 6.748

4 9.039

5 5.691

6 5.449

7 1.940

8 7.887

9 2.305

0.001

2.305

7.887

1.940 5.449

5.691

9.0396.748

8.041

2.551

▪ Use multiple data structures, either alternately or in
parallel

▪ Example 1: Linked list and heap
— Use linked list when there are few events on event list

— Use heap when there are lots of events on event list

— Dynamically switch between the two (copying overhead)

▪ Example 2: Henriksen’s algorithm
— Linked list contains all events on event list

— Binary tree contains subset of events and times

— Tree search indexes into doubly-linked list

— Bounds maximum search distance for insertions (avg case)

Hybrid Schemes

13

▪ A famous event list data structure [Brown 1988]

▪ Useful when future events have widely varying times

▪ Analogy: day planner (day/week/month/year)

▪ Multiple linked lists, with logarithmic time spacings

▪ Near future events are on the first (closest) list

▪ Distant future events are on the last (farthest) list

▪ Hashing operation determines which list to use

▪ Avoids cluttering any event list with too many events

▪ Avg case performance is O(1) for insertion/deletion

Calendar Queue

14

▪ In complex simulation models, the number of events
on the event list might be unknown, and very large

▪ In such cases, an efficient event list implementation
is important for minimizing simulation run time

▪ Event list coordination is also especially important in
parallel/distributed simulation models, because it
can become a central bottleneck (i.e., contention)

▪ We won’t encounter these issues in CPSC 531, but it
is good to know when doing (larger) simulations in
the real working world!

Summary

15

