CPSC 531:
System Modeling and Simulation

UNIVERSITY OF

CALGARY Carey Williamson

Department of Computer Science
University of Calgary
Fall 2017

Event List Management

UNIVERSITY OF

CALGARY

= Event List:

— Data structure containing the events that are scheduled to
occur in the future in the simulation

— Also contains meta-data associated with events

= |mportant to understand the requirements of an
event list, and its dynamics, in order to manage
events efficiently within a simulation

= |[n some simulations, event list management may
dominate the simulation execution time!

Basic Questions

UNIVERSITY OF

CALGARY

= Several important questions to consider when
contemplating the implementation of an event list:

— Is the maximum number of events fixed or variable?

— |s the event list management technique intended for one
specific simulation model, or general purpose in nature?

= Two critical operations in event list management:
— Insertion (also called enqueue) for scheduling an event
— Deletion (also called dequeue) for removing an event

= Often a tradeoff between these two operations!

Criteria for Event List Management

UNIVERSITY OF

CALGARY

= Speed:

— Data structure and algorithms used for insertion and
deletion should have minimal execution time

— Efficient searching is the key (implies sorting, pointers, etc)

= Robustness:

— Should perform well for a wide range of scenarios

— Might exploit knowledge of specific simulation model
= Adaptability:

— Event list management should be “parameter free”

— Search time depends on length of list and time distribution
of events

Example: ttr.c

UNIVERSITY OF

CALGARY

= Example: time-sharing computer system model
called the Think-Type-Receive model (or modified
version called Think-Tweet-Read in twit.c)

= Think time: uniformly distributed
= Typing time: uniformly distributed num of chars
= Receiving time: uniformly distribed num of chars

= Notes:
— Users spend most of the time thinking and/or typing
— Most of the events in the system are transmitting chars

) Example: ttr.c

UNIVERSITY OF

CALGARY

" Array implementation (unsorted)

m Number of Events | Avg Search

5 9,902 5
10 20,678 10
50 101,669 50
100 201,949 100

" Linked list implementation (sorted, search from head)

m Number of Events | Avg Search

5 9,902 1.72
10 20,678 2.73
50 101,669 10.45
100 201,949 19.81

= Linked list approach is 65-80% faster! 6

Many Implementation Choices Possible

UNIVERSITY OF

CALGARY

= Array (sorted or unsorted)

— Suitable for small simulations with < 10 events on list

= Linked list
— Singly-linked or doubly-linked

= Multiple linked lists
— Uses k lists, each of which has a subset of the events
— Could dynamically adjust k to manage average length

= Binary tree
= Heap

= Calendar queue

UNIVERSITY OF

Binary Tree

CALGARY

A recursive data structure, where each node has at
most two children

Tree is ordered, with smaller values to the left of the
root, and larger values to the right of the root

Most imminent event would be the leftmost node
Average case for insertion and deletion is O(log n)
Worst case is O(n) for n events (linked list)

Usually enforces a full or a complete binary tree

More elaborate options include a balanced binary
tree or a splay tree

0
1

2

&

UNIVERSITY OF

CALGARY

o e

0.001

2.551

8.041

6.748

9.039

5.691

5.449

1.940

7.887

2.305

0.001

1.940

Binary Tree Example

2.551

2.305

8.041

6.748

/

5.691

5.449

9.039

7.887

0
1

2

&

UNIVERSITY OF

CALGARY

o e

0.001

2.551

8.041

6.748

9.039

5.691

5.449

1.940

7.887

2.305

1.940

6.748

2.551

5.691

N

8.041

0.001

2.305

5.449

7.887

Complete Binary Tree Example

9.039

10

UNIVERSITY OF

Heap

CALGARY

A recursive data structure, in which the root node
has the lowest event time, and subtrees are heaps

Most imminent event would be the root node
Average case for deletion is O(1)

Average case for insertion is O(log n)

Usually enforces a complete binary tree model

Need to maintain heap property upon each deletion
and/or insertion

More elaborate options can balance the subtrees

0
1

2

&

UNIVERSITY OF

CALGARY

o e

0.001

2.551

8.041

6.748

9.039

5.691

5.449

1.940

7.887

2.305

$2.551

/

~0.001

1.940

6.748

7.887

\

Heap Example

5.449

/

2.305

8.041

9.039

N

5.691

12

Hybrid Schemes

UNIVERSITY OF

CALGARY

= Use multiple data structures, either alternately or in
parallel

= Example 1: Linked list and heap
— Use linked list when there are few events on event list
— Use heap when there are lots of events on event list
— Dynamically switch between the two (copying overhead)

= Example 2: Henriksen’s algorithm
— Linked list contains all events on event list
— Binary tree contains subset of events and times
— Tree search indexes into doubly-linked list
— Bounds maximum search distance for insertions (avg case)

Calendar Queue

UNIVERSITY OF

CALGARY

= A famous event list data structure [Brown 1988]

= Useful when future events have widely varying times
= Analogy: day planner (day/week/month/year)

= Multiple linked lists, with logarithmic time spacings

= Near future events are on the first (closest) list

= Distant future events are on the last (farthest) list

= Hashing operation determines which list to use

= Avoids cluttering any event list with too many events
= Avg case performance is O(1) for insertion/deletion

Summary

UNIVERSITY OF

CALGARY

= |[n complex simulation models, the number of events
on the event list might be unknown, and very large

= |n such cases, an efficient event list implementation
is important for minimizing simulation run time

= Event list coordination is also especially important in
parallel/distributed simulation models, because it
can become a central bottleneck (i.e., contention)

= We won’t encounter these issues in CPSC 531, but it
is good to know when doing (larger) simulations in
the real working world!

