

CPSC 531: System Modeling and Simulation

Carey Williamson Department of Computer Science University of Calgary Fall 2017

- Often in Computer Science you need to:
 - demonstrate that a new concept, technique, or algorithm is feasible
 - demonstrate that a new method is better than an existing method
 - understand the impact of various factors and parameters on the performance, scalability, or robustness of a system

- The performance evaluation work can be done using either experimental, simulation, or analytical approaches (or a combination thereof)
- The design of a performance study requires careful thought about the experimental design/methodology
- Need to identify
 - experimental <u>factors</u> to be tested
 - <u>levels</u> (settings) for these factors
 - performance <u>metrics</u> to be used
 - <u>experimental design</u> to be used

- <u>Factors</u> are the main "components" that are varied in an experiment, in a controlled way, in order to understand their impact on system performance
- Examples: request rate, file size, read/write ratio, number of concurrent clients
- Need to choose factors properly, since the number of factors affects the size of the performance study

- <u>Levels</u> are the precise settings of the factors that are to be used in an experiment
- Examples: file size S = 1 KB, 10 KB, 1 MB
- Example: num clients C = 10, 20, 30, 40, 50
- Example: http (unencrypted), https (encrypted)
- Example: sort algorithm = selection, merge, quicksort
- Need to choose levels realistically
- Need to cover useful portion of the design space

- Performance <u>metrics</u> specify what you want to measure in your performance study
- Examples: response time, throughput, packet loss
- Must choose your metrics properly and instrument your experiment accordingly

- <u>Experimental design</u> refers to the organizational structure of your performance study
- Need to methodically go through factors and levels to get the full range of experimental results desired
- There are several "classical" approaches to experimental design

One factor at a time

- vary only one factor through its levels to see what the impact is on performance
- all other factors are kept fixed at their default settings
- <u>Two factors at a time</u>
 - vary two factors to see not only their individual effects, but also their interaction effects, if any

Full factorial

 try every possible combination of factors and levels to see full range of performance results

- Computer systems performance evaluation defines well-known methods for designing and conducting performance studies
- Great care must be taken in experimental design and methodology if the experiment is to achieve its goal, and if results are to be fully understood