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Motivational Quote

“If you can’t measure it, you can’t improve it.”
- Peter Drucker
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(Slightly Revised) Motivational Quote

“If you can’t measure it, you can’t improve it.”
- Peter Drucker

model
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▪ Input models are the driving force for many simulations

▪ Quality of the output depends on the quality of inputs

▪ There are four main steps for input model development:

1. Collect data from the real system

2. Identify a suitable probability distribution to represent the 
input process

3. Choose parameters for the distribution

4. Evaluate the goodness-of-fit for the chosen distribution and 
parameters

Simulation Input Analysis
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▪ Data collection is one of the biggest simulation tasks

▪ Beware of GIGO: Garbage-In-Garbage-Out

▪ Suggestions to facilitate data collection:
— Analyze the data as it is being collected: check adequacy

— Combine homogeneous data sets (e.g. successive time 
periods, or the same time period on successive days)

— Be aware of inadvertent data censoring: quantities that are 
only partially observed versus observed in their entirety; 
gaps; outliers; risk of leaving out long processing times

— Collect input data, not performance data (i.e., output)

Data Collection
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▪ Where did this data come from?

▪ How was it collected?

▪ What can it tell me?

▪ Do some exploratory data analysis (see next slide)

▪ Does this data make sense?

▪ Is it representative?

▪ What are the key properties?

▪ Does it resemble anything I’ve seen before?

▪ How best to model it?

Data Analysis Checklist (meta-level)
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▪ How much data do I have? (N)

▪ Is it discrete or continuous?

▪ What is the range for the data? (min, max)

▪ What is the central tendency? (mean, median, mode)

▪ How variable is it? (mean, variance, std dev, CV)

▪ What is the shape of the distribution? (histogram)

▪ Are there gaps, outliers, or anomalies? (tails)

▪ Is it time series data? (time series analysis)

▪ Is there correlation structure and/or periodicity?

▪ Other interesting phenomena? (scatter plot)

Data Analysis Checklist (detailed-level)
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Non-Parametric Approach: does not care about the actual 
distribution or its parameters; simply (re-)generates observations 
from the empirically observed CDF for the distribution.

- less work for the modeler, but limited generative capability 
(e.g., variety; length; repetitive; preserves flaws in data)

Parametric Approach: tries to find a compact, concise, and 
parsimonious model that accurately represents the input data.

- more work, but potentially valuable model (parameterizable)

1. Histograms (visual/graphical approach)

2. Selecting families of distributions (logic/statistics)

3. Parameter estimation (statistical methods)

4. Goodness-of-fit tests (statistical/graphical methods)

Identifying the Distribution
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▪ Histogram: A frequency distribution plot useful in 
determining the shape of a distribution

— Divide the range of data into (typically equal) intervals 
or cells

— Plot the frequency of each cell as a rectangle

▪ For discrete data: 
— Corresponds to the 

probability mass function

▪ For continuous data: 
— Corresponds to the 

probability density function 

Histograms (1 of 3)
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▪ The key problem is determining the cell size
— Small cells: large variation in the number of observations 

per cell 
— Large cells: details of the distribution are completely lost
— It is possible to reach very different conclusions about the 

distribution shape 

▪ The cell size depends on:
— The number of observations
— The dispersion of the data

▪ Guideline:
— The number of cells ≈ the square root of the sample size

Histograms (2 of 3)
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 Example: It is possible to reach very different conclusions 
about the distribution shape by changing the cell size

Histograms (3 of 3)

Same data 

with different 

interval sizes
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▪ A family of distributions is selected based on:

— The context of the input variable

— Shape of the histogram

▪ Frequently encountered distributions:

— Easier to analyze: Exponential, Geometric, Poisson

— Moderate to analyze: Normal, Log-Normal, Uniform

— Harder to analyze: Beta, Gamma, Pareto, Weibull, Zipf

Selecting the Family of Distributions (1 of 4)
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▪ Use the physical basis of the distribution as a guide

▪ Examples:
— Binomial: number of successes in 𝑛 trials

— Poisson: number of independent events that occur in a 
fixed amount of time or space

— Normal: distribution of a process that is the sum of a 
number of (smaller) component processes

— Exponential: time between independent events, or a 
processing time duration that is memoryless

— Discrete or continuous uniform: models the complete 
uncertainty about the distribution (other than its range)

— Empirical: does not follow any theoretical distribution

Selecting the Family of Distributions (2 of 4)
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▪ Remember the physical characteristics of the process
— Is the process naturally discrete or continuous valued?

— Is it bounded?

— Is it symmetric, or is it skewed?

▪ No “true” distribution for any stochastic input 
process

▪ Goal: obtain a good approximation that captures the 
salient properties of the process (e.g., range, mean, 
variance, skew, tail behavior)

Selecting the Family of Distributions (3 of 4)

14



How to check if the chosen distribution is a good fit?

▪ Compare the shape of the pmf/pdf of the 
distribution with the histogram:

— Problem: Difficult to visually compare probability curves

— Solution: Use Quantile-Quantile plots

Selecting the Family of Distributions (4 of 4)

Example: Oil change time at MinitLube

• Histogram suggests “exponential” dist.

• How well does Exponential fit the data?
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▪ Q-Q plot is a useful tool for evaluating distribution fit
— It is easy to visually inspect since we look for a straight line

▪ If 𝑋 is a random variable with CDF 𝐹(𝑥), then the 𝑞-
quantile of 𝑋 is given by 𝑥𝑞 such that:

𝐹 𝑥𝑞 = ℙ 𝑋 ≤ 𝑥𝑞 = 𝑞, 0 < 𝑞 < 1

▪ When 𝐹(𝑥) has an inverse, then 𝑥𝑞 = 𝐹−1(𝑞)

Quantile-Quantile Plots (1 of 8)
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▪ 𝑥𝑞
𝑆: empirical 𝑞-quantile from the sample

▪ 𝑥𝑞
𝑀: theoretical 𝑞-quantile from the model

▪ Q-Q plot: plot 𝑥𝑞
𝑆 versus 𝑥𝑞

𝑀 as a scatterplot of points

Quantile-Quantile Plots (2 of 8)
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▪ 𝑋: a random variable with CDF 𝐹(𝑥)

▪ {𝑋𝑖 , 𝑖 = 1,… , 𝑛}: a sample of 𝑋 consisting of 𝑛 observations

▪ Define 𝐹𝑛(𝑥): empirical CDF of 𝑋,

𝐹𝑛 𝑥 =
number of 𝑋𝑖

′𝑠 ≤ 𝑥

𝑛

▪ {𝑋 𝑗 , 𝑗 = 1,… , 𝑛}: observations ordered from smallest to largest

𝑋(1) ≤ 𝑋(2) ≤ ⋯ ≤ 𝑋(𝑛)

▪ It follows that

𝐹𝑛 𝑥 =
𝑗

𝑛
where 𝑗 is the rank or order of 𝑥, i.e., 𝑥 is the 𝑗-th value among 𝑋𝑖’s.

Quantile-Quantile Plots (3 of 8)
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▪ Problem:
— For finite value 𝑥 = 𝑋(𝑛), we have 𝐹𝑛

−1 1 = 𝑋(𝑛)
— But from the model we generally have: 𝐹−1 1 = ∞
— How to resolve this mismatch?

▪ Solution: slightly modify the empirical distribution

෨𝐹𝑛 𝑋 𝑗 = 𝐹𝑛 𝑋 𝑗 −
0.5

𝑛
=
𝑗 − 0.5

𝑛

▪ Therefore, 

෨𝐹𝑛
−1

𝑗 − 0.5

𝑛
= 𝑋(𝑗)

▪ and, thus,

empirical
𝑗−0.5

𝑛
−quantile of X = 𝑋(𝑗)

Quantile-Quantile Plots (4 of 8)
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▪ 𝐹(𝑥): the CDF fitted to the observed data, i.e., the model

▪ Q-Q plot: plotting empirical quantiles vs. model quantiles

—
𝑗−0.5

𝑛
-quantiles for 𝑗 = 1,… , 𝑛

▪ Empirical quantile = 𝑋(𝑗)

▪ Model quantile =  𝐹−1
𝑗−0.5

𝑛

▪ Q-Q plot features:
— Approximately a straight line if 𝐹 is a member of an appropriate 

family of distributions

— The line has slope 1 if 𝐹 is a member of an appropriate family of 
distributions with appropriate parameter values

Quantile-Quantile Plots (5 of 8)
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▪ Example: Check whether the door installation times follow a normal 
distribution.

— The observations are ordered from smallest to largest:

— 𝑋(𝑗)’s are plotted versus 𝐹−1
𝑗−0.5

𝑛
where 𝐹 is the normal CDF with 

sample mean (99.93 sec) and sample STD (1.29 sec)

Quantile-Quantile Plots (6 of 8)

𝑗 value 𝑗 value 𝑗 value 𝑗 value

1 97.12 6 99.34 11 100.11 16 100.85

2 98.28 7 99.50 12 100.11 17 101.21

3 98.54 8 99.51 13 100.25 18 101.30

4 98.84 9 99.60 14 100.47 19 101.47

5 98.97 10 99.77 15 100.69 20 102.77
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▪ Example (continued): 
Check whether the door installation 
times follow a normal distribution.

Quantile-Quantile Plots (7 of 8)

Straight line, 

supporting the 

hypothesis of a 

normal distribution

Superimposed density 

function of the Normal 

distribution scaled by the 

number of observation, 

that is 20 × 𝑓(𝑥)
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▪ Consider the following while evaluating the linearity 
of a Q-Q plot:

— The observed values never fall exactly on a straight line

— Variation of the extremes is higher than the middle.

— Linearity of the points in the middle of the plot (the main 
body of the distribution) is more important.

Quantile-Quantile Plots (8 of 8)
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Next step after selecting a family of distributions.

▪ If observations in a sample of size 𝑛 are 
𝑋1, 𝑋2, … , 𝑋𝑛 (discrete or continuous), the sample 
mean and variance are:

ത𝑋 =
σ𝑖=1
𝑛 𝑋𝑖

𝑛
,       s2 =

σ𝑖=1
𝑛 𝑋𝑖− ത𝑋 2

𝑛−1
=

σ𝑖=1
𝑛 𝑋𝑖

2−𝑛 ത𝑋2

𝑛−1

Parameter Estimation (1 of 4)
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▪ If the data are discrete and have been grouped into a 
frequency distribution with 𝑘 distinct values:

ത𝑋 =
σ𝑗=1
𝑘 𝑓𝑗𝑋𝑗

𝑛
,    

s2 =
σ𝑗=1
𝑘 𝑓𝑗 𝑋𝑗 − ത𝑋

2

𝑛 − 1
=
σ𝑗=1
𝑘 𝑓𝑗𝑋𝑗

2 − 𝑛 ത𝑋2

𝑛 − 1

where 𝑓𝑗 is the observed frequency of value 𝑋𝑗

Parameter Estimation (2 of 4)
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▪ Vehicle Arrival Example: number of vehicles arriving at an intersection 
between 7: 00 am and 7: 05 am was monitored for 100 random workdays. 

𝑛 = 100


𝑗=1

𝑘

𝑓𝑗𝑋𝑗 = 364


𝑗=1

𝑘

𝑓𝑗𝑋𝑗
2 = 2080

— The sample mean and variance are

ത𝑋 =
364

100
= 3.64

𝑠2 =
2080−100∗ 3.64 2

99
= 7.63

Parameter Estimation (3 of 4)

# Arrivals (𝑋𝑗) Frequency (𝑓𝑗)

0 12

1 10

2 19

3 17

4 10

5 8

6 7

7 5

8 5

9 3

10 3

11 1
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▪ The histogram suggests 𝑋 is a Poisson distribution

— However, the sample mean is not equal to sample variance

— Reason: each estimator is a random variable (not perfect)

Parameter Estimation (4 of 4)
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▪ Conduct hypothesis testing on input data distribution 
using well-known statistical tests, such as:

— Chi-square test

— Kolmogorov-Smirnov test 

▪ Note:  you don’t always get a single unique correct 
distributional result for any real application:

— If very little data are available, it is unlikely to reject any 
candidate distributions

— If a lot of data are available, it is likely to reject all 
candidate distributions

Goodness-of-Fit Tests (1 of 2)
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Objective: to determine how well a (theoretical) 
statistical model fits a given set of empirical 
observations (sample)

▪ Vehicle Arrival Example: 

— The histogram suggests 𝑋 might be a Poisson distribution

— Hypothesis:
𝑋 has a Poisson distribution with rate 3.64

— How can we test the hypothesis?

Goodness-of-Fit Tests (2 of 2)
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Intuition:

▪ It establishes whether an observed frequency 
distribution differs from a model distribution

— Model distribution refers to the hypothesized distribution with 
the estimated parameters

— Can be used for both discrete and continuous random variables

— Valid for large sample sizes

▪ If the difference between the distributions is smaller than 
a critical value, the model distribution fits the observed 
data well, otherwise, it does not.

Chi-Square Test (1 of 11)
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Concepts:

▪ Null hypothesis 𝐻0:
The observed random variable 𝑋 conforms to the model distribution

▪ Alternative hypothesis 𝐻1: 
The observed random variable 𝑋 does not conform to the model distribution

▪ Test statistic 𝜒2:
The measure of the difference between sample data and the model 
distribution

▪ Significance level 𝛼:
The probability of rejecting the null hypothesis when the null hypothesis is 
true. Common values are 0.05 and 0.01.

Chi-Square Test (2 of 11)
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Approach:

▪ Arrange the 𝑛 observations into a set of 𝑘 intervals or cells, where interval 
𝑖 is given by 𝑎𝑖−1, 𝑎𝑖

— Suggestion: set the interval length such that at least 5 observations fall in each 
interval

▪ Recommended number of class intervals (𝑘):

▪ Caution: Different grouping of data (i.e., 𝑘) can affect the hypothesis 
testing result.

Chi-Square Test (3 of 11)

Sample Size, n Number of Class Intervals, k

20 Do not use the chi-square test

50 5 to 10

100 10 to 20

> 100 n
1/2

 to n/5
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Test Statistic:

▪ 𝑂𝑖: the number of observations 𝑋𝑗 that fall in interval 𝑖

▪ 𝐸𝑖: the expected number of observations in interval 𝑖 if taking 𝑛 samples 
from the model distribution:

— Continuous model with fitted PDF 𝑓(𝑥): 

𝐸𝑖 = 𝑛 ⋅ න
𝑎𝑖−1

𝑎𝑖

𝑓 𝑥 𝑑𝑥

— Discrete model with fitted PMF 𝑝(𝑥): 

𝐸𝑖 = 𝑛 ⋅ 

𝑎𝑖−1≤𝑥<𝑎𝑖

𝑝 𝑥

Chi-Square Test (4 of 11)
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Test Statistic:

▪ Test statistic 𝜒2 is defined as

𝜒2 =

𝑖=1

𝑘
𝑂𝑖 − 𝐸𝑖

2

𝐸𝑖

▪ 𝜒2 approximately follows the chi-square distribution 
with 𝑘 − 𝑠 − 1 degrees of freedom

— 𝑘: the number of intervals

— 𝑠: the number of parameters of the model (i.e., hypothesized distribution) 
estimated by the sample statistics
▪ Uniform: 𝑠 = 0

▪ Poisson, Exponential, Bernoulli, Geometric: 𝑠 = 1

▪ Normal, Binomial: 𝑠 = 2

Chi-Square Test (5 of 11)
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▪ The distribution is not symmetric

▪ Minimum value is 0

▪ Mean = degrees of freedom

Chi-Square Test (6 of 11)

Chi-Square PDF

𝑑𝑓 = 2

𝑑𝑓 = 5

𝑑𝑓 = 10
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Intuition:

▪ 𝜒2 measures the normalized squared difference between 
the frequency distribution of the sample data and 
hypothesized model

▪ A large 𝜒2 provides evidence that the model is not a 
good fit for the sample data:
— If the difference is greater than a critical value then reject the 

null hypothesis

— Question: what is an appropriate critical value?

— Answer: it is pre-specified by the modeler.

Chi-Square Test (7 of 11)
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Critical Value:

▪ For significance level 𝛼, the critical value 𝜒𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
2 is defined such that:

ℙ 𝜒𝑘−𝑠−1
2 ≥ 𝜒𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

2 = 𝛼

▪ 𝜒𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
2 = 𝜒𝑘−𝑠−1,1−𝛼

2

the (1 − 𝛼)-quantile of 
chi-square distribution 
with 𝑘 − 𝑠 − 1
degrees of freedom

Chi-Square Test (8 of 11)

Chi-Square distributed random 

variable with 𝑘 − 𝑠 − 1
degrees of freedom.

Chi-square PDF

Shaded area = 𝛼

RejectDo not reject

𝜒𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
2
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▪ We say that the null hypothesis 𝐻0 is rejected at the significance level 𝛼, 
if:

𝜒2 > 𝜒𝑘−𝑠−1,1−𝛼
2

▪ Interpretation:

— The test statistic can be 
as large as the critical value

— If the test statistic is greater 
than the critical value then, 
the null hypothesis is rejected

— If the test statistic is not greater 
than the critical value then, 
the null hypothesis 
can not be rejected

Chi-Square Test (9 of 11)

Chi-square PDF

Shaded area = 𝛼

RejectDo not reject

𝜒𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
2
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Chi-Square Test (10 of 11)



▪ Vehicle Arrival Example (continued): 
𝐻0: the random variable is Poisson distributed (with 𝜆 = 3.64).

𝐻1:  the random variable is not Poisson distributed.

— Degrees of freedom is 𝑘 − 𝑠 − 1 = 7 − 1 − 1 = 5, hence, the 
hypothesis is rejected at the 0.05 level of significance:

𝜒2 = 27.72 > 𝜒0.95,5
2 = 11.1

Chi-Square Test (11 of 11)
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0 12 2.6

1 10 9.6

2 19 17.4 0.15

3 17 21.1 0.83

4 10 19.2 4.41

5 8 14.0 2.57

6 7 8.5 0.26

7 5 4.4

8 5 2.0

9 3 0.8

10 3 0.3

>11 1 0.1

100 100.0 27.72

7.87

11.63

Combined because 

of min 𝐸𝑖
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▪ Intuition: 

— Formalizes the idea behind examining a Q-Q plot

— The test compares the CDF of the hypothesized 
distribution with the empirical CDF of the sample 
observations based on the maximum distance between 
two cumulative distribution functions.  

▪ A more powerful test that is particularly useful when:

— Sample sizes are small

— No parameters have been estimated from the data

Kolmogorov-Smirnov Test

41



▪ If data is not available, some possible sources to 
obtain information about the process are:

— Engineering data: often product or process has performance ratings 
provided by the manufacturer or company that specify time or 
production standards

— Expert option: people who are experienced with the process or similar 
processes, often, they can provide optimistic, pessimistic and most-
likely times, and they may know the variability as well

— Physical or conventional limitations: physical limits on performance, 
limits or bounds that narrow the range of the input process

— The nature of the process

▪ The uniform, triangular, and beta distributions are 
often used as input models.

Selecting Model without Data (1 of 2) 
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▪ Example: Production planning simulation.

— Input of sales volume of various products is required, salesperson of 
product XYZ says that:

▪ No fewer than 1,000 units and no more than 5,000 units will 
be sold.  

▪ Given her experience, she believes there is a 90% chance of 
selling more than 2,000 units, a 25% chance of selling more 
than 3,000 units, and only a 1% chance of selling more than 
4,000 units.

— Translating these information into a cumulative probability of being 
less than or equal to those goals for simulation input: 

Selecting Model without Data (2 of 2)

i Interval (Sales) Cumulative Frequency, ci

1 1000  x 2000 0.10

2 2000 < x 3000 0.75

3 3000 < x 4000 0.99

4 4000 < x 5000 1.00
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▪ So far, we have considered:

— Single variate models for independent input parameters

▪ To model correlation among input parameters

— Multivariate models

— Time-series models

Multivariate and Time-Series Models
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