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Quote of the Day

“A person with one watch knows what time it is.
A person with two watches is never quite sure.”

-Segal’s Law
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▪ Purpose: estimate system performance from 
simulation output

▪ Understand:
— Terminating and non-terminating simulations

— Transient and steady-state behavior

▪ Learn about statistical data analysis:
— Computing confidence intervals

— Determining the number of observations required to achieve a desired 
confidence interval

Simulation Output Analysis
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▪ Measure of performance and error

▪ Transient and steady state

— Types of simulations

— Steady-state analysis

— Initial data deletion

— Length of simulation run

▪ Confidence interval

— Estimating mean and variance

— Confidence interval for small and large samples

— Width of confidence interval

Outline
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▪ Output data are random variables, because the input variables are 
stochastic, and model is basically an input-output transformation

▪ A queueing example: Banff park entry booth
— Arrival rate ~ Poisson arrival process (𝜆 per minute)

— Service time ~𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝜇 = 1.5) minutes

— System performance: long-run average queue length

— Question 1:  does simulation model result agree with M/M/1 model?

— Question 2: is queueing better/same/worse for HyperExp() service?

— Question 3: how much better would it be with two servers?

— Suppose we run the simulation 3 times, i.e., 3 replications
▪ Each replication is for a total of 5,000 minutes

▪ Divide each replication into 5 equal 
subintervals (i.e., batches) of 1000 minutes

▪ 𝑌𝑖,𝑗: Average number of cars in queue 
from time 𝑗 − 1 × 1000 to 𝑗 × 1000 in replication 𝑖

▪ 𝑌𝑖: Average number of cars in queue in replication 𝑖

Stochastic Nature of Simulation Output
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▪ queueing example (cont’d):
— Batched average queue length for 3 independent replications:

— Inherent variability in stochastic simulation both within a single 
replication and across different replications

— The average across 3 replications, i.e., Y1, Y2, Y3, can be regarded as 
independent observations, but averages within a replication, e.g., 
𝑌11, 𝑌12, 𝑌13, 𝑌14, 𝑌15, are not.

Stochastic Nature of Simulation Output

1, Y1j 2, Y2j 3, Y3j

[0, 1000) 1 3.61 2.91 7.67

[1000, 2000) 2 3.21 9.00 19.53

[2000, 3000) 3 2.18 16.15 20.36

[3000, 4000) 4 6.92 24.53 8.11

[4000, 5000) 5 2.82 25.19 12.62

[0, 5000) 3.75 15.56 13.66

ReplicationBatching Interval 

(minutes) Batch, j
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▪ Consider estimating a performance parameter Θ

— The true value of Θ is unknown

— Can only observe simulation output

— Estimate Θ using independent observations obtained from 
independent simulation runs (i.e., replications)

▪ ෡Θ: estimation of Θ

— Is unbiased if: E ෡Θ = Θ

— Is biased if: E ෡Θ ≠ Θ

— Estimation bias = E ෡Θ − Θ

Measure of Performance

Desired
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Measure of Error

▪ Confidence Interval (CI):

— We cannot know for certain how far ෡Θ is from Θ

— CI attempts to bound the estimation error |Θ − ෡Θ|

— The more replications we make, the lower the error in ෡Θ

▪ Example: queueing system

— Y: long-run average queue length

— Y𝑖: average queue length in simulation run 𝑖

— Define estimator ෡Y = ഥY, i.e.,

෡Y =
1

8
Y1 +⋯+ Y8 = 14.814

— Can calculate a 95% confidence interval for 𝑌 such that:

ℙ Y − ෡Y ≤ ϵ = 0.95

— For instance:      11.541 ≤ Y ≤ 18.087

𝒊 𝒀𝒊

1 15.028

2 13.385

3 18.891

4 10.559

5 8.866

6 15.883

7 18.598

8 17.302
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Outline
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1. Terminating simulation:
there is a natural event that specifies the length of the 
simulation:

— Runs for some duration of time 𝑇𝐸, where 𝐸 is a specified event 
that stops the simulation

— Starts at time 0 under well-specified initial conditions

— Ends at specified stopping time 𝑇𝐸

▪ Example: Simulating banking operations over “one day”

— Opens at 8:30 am (time 0) with no customers present and 8 of 
the 11 tellers working (initial conditions), and closes at 4:30 pm 
(Time 𝑇𝐸 = 480 minutes)

Types of Simulations
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2. Non-terminating simulation:  

No natural event specifying length of the simulation

— Runs continuously, for a very long period of time

— Initial conditions defined by the performance analyst

— Runs for some analyst-specified period of time 𝑇𝐸
— Of interest are transient and steady state behavior

▪ Example: Simulating banking operations to compute 
the “long-run” mean response time of customers

Types of Simulations
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▪ Whether a simulation is considered to be terminating 
or non-terminating depends on both
— The objectives of the simulation study, and

— The nature of the system.

▪ Similar statistical techniques applied to both types of 
simulations to estimate performance and error

▪ For non-terminating simulations:
— Transient and steady-state behavior are different

— Generally, steady-state performance is of interest

Types of Simulations
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Consider a queueing system

▪ Define 𝑃 𝑛, 𝑡 = ℙ 𝑛 in system at time 𝑡

— Depends on the initial conditions

— Depends on time 𝑡

▪ Steady state behavior

— System behavior over long-run: 𝑃 𝑛 = lim
𝑡→∞

𝑃 𝑛, 𝑡

— Independent of the initial conditions

— Independent of time

Transient and Steady-State Behavior
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Transient and Steady-State Behavior



▪ General approach based on independent replications:
— Choose the initial conditions

— Determine the length of simulation run

— Run the simulation and collect data

▪ Problem: steady-state results are affected by using 
artificial and potentially unrealistic initial conditions

▪ Solutions:
1. Intelligent initialization

2. Simulation warmup (initial data deletion)

Steady-State Output Analysis
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▪ Initialize the simulation in a state that is more 
representative of long-run conditions

▪ If the system exists, collect data on it and use these 
data to specify typical initial conditions

▪ If the system can be simplified enough to make it 
mathematically solvable (e.g. queueing models), 
then solve the simplified model to find long-run 
expected or most likely conditions, and use that to 
initialize the simulation

Intelligent Initialization
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▪ Divide each simulation into two phases:

— Initialization phase, from time 0 to time 𝑇0
— Data-collection phase, from 𝑇0 to stopping time 𝑇0 + 𝑇𝐸

▪ Important to do a thorough job of investigating the 
initial-condition bias:

— Bias is not affected by the number of replications, rather, it is affected 
only by deleting more data (i.e., increasing T0) or extending the length 
of each run (i.e. increasing TE)

▪ How to determine 𝑇0 and 𝑇𝐸?

Simulation Warmup: Initial Data Deletion

18



▪ How to determine 𝑇0?

— After 𝑇0, system should be more nearly representative of 
steady-state behavior

— System has reached steady state: the probability 
distribution of the system state is close to the steady-state 
probability distribution

— No widely accepted, objective and proven technique to 
guide how much data to delete to reduce initialization bias 
to a negligible level

— Heuristics such as plotting the moving averages can be 
used

Simulation Warmup: Initial Data Deletion
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▪ How to implement data deletion in DES?
— At initialization, schedule a reset event at clock + 𝑇0
—reset event routine:  reset all statistical counters 

(for data collection) to their initial values

— At the end of simulation, statistical counters contain data 
collected after the transient period

Initial Data Deletion
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▪ How to determine 𝑇𝐸?

— Too short: results may not be reliable

— Too long: wasteful of resources

▪ Method to determine length of run

— Perform independent replications

— For each replication, perform initial data deletion

— Select length of run and number of replications such that 
the confidence intervals for the performance measures of 
interest narrow to the desired widths

Length of Simulation Run
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▪ Measure of performance and error

▪ Transient and steady state

— Types of simulations

— Steady-state analysis

— Initial data deletion

— Length of simulation run

▪ Confidence interval

— Estimating mean and variance

— Confidence interval for small and large samples

— Width of confidence interval

Outline
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Confidence Interval

Terminology

▪ Observation: a single value of a performance 
measure from an experiment
Example: mean response time of a web server

▪ Sample: the set of observations of a performance 
measure from an experiment
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Sample Versus Population

▪ Generate several million random numbers with a 
given distribution and draw a sample of m
observations

▪ Sample mean   population mean

▪ In discrete-event simulation, population 
characteristics such as mean and variance are 
unknown

— Need to estimate them using simulation output
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▪ Consider a sample of 𝑚 observations, 
denoted by  𝑌1, 𝑌2, … , 𝑌𝑚

▪ Example: 𝑌𝑖 is the mean response time of a web server in 
the 𝑖-th experiment

▪ Sample mean:

ത𝑌 =
1

𝑚
෍

𝑖=1

𝑚

𝑌𝑖

— Sample mean ത𝑌 is an unbiased estimator for the unknown 
population mean

Estimating Mean
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Estimating Variance

▪ Sample variance:

𝑠2 =
1

𝑚 − 1
෍

𝑖=1

𝑚

𝑌𝑖 − ത𝑌 2

— 𝑠2 is an unbiased estimator for the unknown population 
variance

▪ The divisor for 𝑠2 is 𝑚− 1 and not 𝑚
— This is because only 𝑚 − 1 of the 𝑚 differences       

are independent
— Given 𝑚 − 1 differences, 𝑚-th difference can be computed 

since the sum of all 𝑚 differences must be zero 
— The number of independent terms in a sum is also called its 

degrees of freedom
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Confidence Interval for Mean

Consider a simulation study

▪ 𝑌: random variable denoting the performance measure 
corresponding to the simulation output

— Example: average wait time of customers in a bank

▪ Problem: 𝑌 varies across different simulation runs
— Consider 𝑚 simulation runs

— 𝑌𝑖: simulation output in simulation run 𝑖

— Generally, 𝑌1 ≠ 𝑌2 ≠ ⋯ ≠ 𝑌𝑚

▪ Solutions:
1. Characterize distribution of 𝑌 (e.g., CDF)

2. Characterize statistics of 𝑌 (e.g., mean and variance)
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Confidence Interval for Mean

Consider a simulation study

▪ 𝑌: random variable denoting the performance measure 
corresponding to the simulation output

— Example: average wait time of customers in a bank

▪ Objective is to characterize the unknown mean 𝜇 = 𝐸[𝑌]
— Algorithm:

▪ Make 𝑚 independent simulation runs to obtain m observations 
𝑌1, 𝑌2, … , 𝑌𝑚

▪ Sample mean ത𝑌 is an unbiased estimator for 𝜇

— Question: How far is ത𝑌 from 𝜇?
▪ Determine confidence interval for mean
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𝜇
c1 c2

Confidence Interval for Mean

▪ Determine bounds c1 and c2 such that:

ℙ 𝑐1 ≤ 𝜇 ≤ 𝑐2 = 1 − 𝛼

▪ [c1, c2]: 1 − 𝛼 100% Confidence Interval (CI)

▪ 1 − 𝛼 100% : Confidence Level
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Determining Confidence Interval

▪ ത𝑌 is a random variable:

ത𝑌 =
𝑌1 + 𝑌2 +⋯+ 𝑌𝑚

𝑚
where the 𝑌𝑖

′𝑠 are IID with the same distribution as 𝑌~𝑁(𝜇, 𝜎2)

▪ We have:

𝐸 ത𝑌 =
𝐸 𝑌1 +⋯+ 𝐸[𝑌𝑚]

𝑚
=
𝑚 𝜇

𝑚
= 𝜇

𝑉 ത𝑌 =
𝑉 𝑌1 +⋯+ 𝑉[𝑌𝑚]

𝑚2
=
𝑚 𝜎2

𝑚2
=
𝜎2

𝑚

▪ 𝜇 and 𝜎2 unknown but can be estimated by ത𝑌 and 𝑠2

30



Determining Confidence Interval

▪ Define the normalized random variable 𝑋 as

𝑋 =
ത𝑌 − 𝜇

𝑠/ 𝑚

▪ Theorem: The distribution of 𝑋 is independent of 
unobservable parameter 𝜇

— For large 𝑚: X follows a standard normal distribution

— For small 𝑚: X follows a Student’s 𝑡-distribution
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Confidence Interval for Small Samples

▪ Define the normalized random variable T as

𝑇 =
ത𝑌 − 𝜇

𝑠/ 𝑚

▪ T has a standard Student’s 𝑡-distribution
with 𝑑 = 𝑚 − 1 degrees of freedom

— It describes the distribution of the mean of a sample 
of 𝑚 observations

— Symmetric distribution

— 𝐸 𝑇 = 0, and 𝑉 𝑇 =
𝑑

𝑑−2
for 𝑑 ≥ 2

— As 𝑚 → ∞, we have 𝑇~𝑁(0, 1)
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Student’s t-Distribution

d=1

d=2

d=5

d=10

d=infinity

Probability Density Function (PDF)
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▪ Quantile:  The 𝑥 value at which the CDF takes a value a is 
called the a-quantile or 100a-percentile. It is denoted by 𝑥𝛼:

𝛼 = 𝐹 𝑥𝛼 = ℙ(𝑋 ≤ 𝑥𝛼)

▪ Example: X has standard normal distribution
— 95-percentile = 0.95-quantile = 1.6449
— 25-percentile = 0.25-quantile = - 0.6745

Determining Confidence Interval

α

xα

𝑓(𝑥)
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▪ Define c = 𝑡𝑚−1,1−𝛼/2 as: 
(1 − 𝛼/2)-quantile of 𝑇 with 𝑑 = 𝑚 − 1 degrees of freedom:

ℙ 𝑇 ≤ 𝑡𝑚−1,1−𝛼/2 = 1 − 𝛼/2

▪ Note that 𝑡𝑚−1,1−𝛼/2 does not depend on the value of 
the unobservable population mean 𝜇

Determining Confidence Interval

0 𝑡𝑚−1,1−𝛼/2−𝑡𝑚−1,1−𝛼/2
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Determining Confidence Interval

▪ Therefore
ℙ −𝑐 ≤ 𝑇 ≤ 𝑐 = 1 − 𝛼

▪ Which means

ℙ −𝑐 ≤
ത𝑌 − 𝜇

𝑠/ 𝑚
≤ 𝑐 = 1 − 𝛼

⇒ ℙ ത𝑌 − 𝑐
𝑠

𝑚
≤ 𝜇 ≤ ത𝑌 + 𝑐

𝑠

𝑚
= 1 − 𝛼

▪ (1-α)100% confidence interval of µ is given by

ത𝑌 − 𝑐
𝑠

𝑚
, ത𝑌 + 𝑐

𝑠

𝑚
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Example

▪ Sample: 
-0.04, -0.19, 0.14, -0.09, -0.14, 0.19, 0.04, and 0.09

▪ Mean = 0, Sample standard deviation = 0.138

▪ For 90% confidence interval: t7, 0.95 = 1.895

▪ Confidence interval for the mean

)093.0  ,093.0(093.00
8

138.0
895.10  
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Confidence Interval: Meaning

▪ If we take 100 samples and construct confidence 
interval for each sample, the interval would include 
the population mean in 90 cases.

µc1 c2

Total yes > 100(1-α)
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Example: Assignment 2

▪ 10 replications of Banff park entry gate simulation

▪ Warmup: 10,000 minutes

▪ Number of cars: 60,000

▪ See graph online for 90% confidence intervals

λ 1/μ ρ Mean Q Std Dev

0.5 1.5 0.75 3.019 0.109

0.55 1.5 0.825 4.715 0.174

0.60 1.5 0.90 9.042 0.980

0.65 1.5 0.975 39.876 12.76
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Example: Assignment 2 (cont’d)

▪ 10 batches from Banff park entry gate simulation

▪ Warmup: 0 minutes

▪ Number of cars: 500,000

λ 1/μ ρ Mean Q Std Dev

0.5 1.5 0.75 2.997 0.088

0.55 1.5 0.825 4.813 0.206

0.60 1.5 0.90 9.033 0.608

0.65 1.5 0.975 42.22 14.72
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▪ Define normalized random variable 𝑍 as

𝑍 =
ത𝑌 − 𝜇

𝑠/ 𝑚

where 𝑠 is the sample standard deviation

▪ From Central Limit Theorem: 𝑍 has standard normal 
distribution for large 𝑚

▪ (1-α)100% confidence interval for m:
z1-a/2 = (1-a/2)-quantile of 𝑁(0,1)

Confidence Interval for Large Samples

0-z1-a/2 z1-a/2







 

m

s
zY

m

s
zY 2/12/1   , aa
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▪ ത𝑌= 3.90, 𝑠 = 0.95, and m = 32 

▪ A 90% confidence interval for the mean
= 

▪ We can state with 90% confidence that the 
population mean is  between 3.62 and 4.17  The 
chance of error in this statement is 10%. 

Example 
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Width of Confidence Interval

▪ Width of the confidence interval is  

2 ⋅ 𝑡
𝑚−1,1−

𝛼
2
⋅
𝑠

𝑚

▪ Width can be reduced by 
— Using a larger 𝑚 (i.e., more simulation runs)

— Using a smaller 𝑠 (i.e., longer simulation runs)
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▪ Suppose the desired width of the confidence interval 
is 𝛿, and m replications have been made but the 
desired width is not met:

— Total number of replications required can be estimated by

𝑚∗ = 2 ⋅ 𝑡
𝑚−1,1−

𝛼
2
⋅
𝑠

𝛿

2

— Number of additional replications required = 𝑚∗ −𝑚

Number of Simulation Runs
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▪ An alternative to increasing 𝑚 is to increase total run 
length 𝑇0 + 𝑇𝐸 for each replication

▪ Approach: for 𝛽 ≥ 1

— Increase run length from (𝑇0 + 𝑇𝐸) to 𝛽(𝑇0 + 𝑇𝐸), and

— Delete additional amount of data, from time 0 to time 𝛽𝑇0

Length of Simulation Runs

𝛽𝑇0 𝛽(𝑇0+𝑇𝐸)
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