CPSC 531: Random Numbers

Jonathan Hudson
Department of Computer Science
University of Calgary
http://www.ucalgary.ca/~hudsonj/531F17

Introduction

- In simulations, we generate random values for variables with a specified distribution
- E.g., model service times using the exponential distribution
- Generation of random values is a two step process

1. Random number generation: Generate random numbers uniformly distributed between 0 and 1
2. Random variate generation: Transform the above generated random numbers to obtain numbers satisfying the desired distribution

Pseudo Random Numbers

- Common pseudo random number generators determine the next random number as a function of the previously generated random number (i.e., recursive calculations are applied)

$$
x_{n}=f\left(x_{n-1}, x_{n-2}, x_{x-3}, \ldots\right)
$$

- Random numbers generated, are therefore, deterministic. That is, sequence of random numbers is known a priori (BEFORE) given the starting number (called the seed). For this reason, random numbers are known as pseudo random.
- True random number generator's would produce numbers that are independent of those previous
- We can determine quality of uniformity and independence of pseudo RNG with statistical tests

A Sample Generator

$$
x_{n}=\left(5 x_{n-1}+1\right) \bmod 16
$$

A Sample Generator

$$
x_{n}=\left(5 x_{n-1}+1\right) \bmod 16
$$

- Starting with $x_{0}=5$:
- The first 32 numbers obtained by the above procedure $10,3,0,1,6,15,12,13,2,11,8,9,14,7,4,5,10,3,0,1,6,15,12,13$, 2, 11, 8, 9, 14, 7, 4, 5.

A Sample Generator

$$
x_{n}=\left(5 x_{n-1}+1\right) \bmod 16
$$

- Starting with $x_{0}=5$:
- The first 32 numbers obtained by the above procedure $10,3,0,1,6,15,12,13,2,11,8,9,14,7,4,5,10,3,0,1,6,15,12,13$, 2, 11, 8, 9, 14, 7, 4, 5.
- By dividing x 's by 16 :
0.6250, 0.1875, 0.0000, 0.0625, 0.3750, 0.9375, 0.7500, 0.8125, 0.1250, $0.6875,0.5000,0.5625,0.8750,0.4375,0.2500,0.3125,0.6250,0.1875$, 0.0000, 0.0625, 0.3750, 0.9375, 0.7500, 0.8125, 0.1250, 0.6875, 0.5000, $0.5625,0.8750,0.4375,0.2500,0.3125$.

A Sample Generator

$$
x_{n}=\left(5 x_{n-1}+1\right) \bmod 16
$$

- Starting with $x_{0}=5$:
- The first 32 numbers obtained by the above procedure $10,3,0,1,6,15,12,13,2,11,8,9,14,7,4,5,10,3,0,1,6,15,12,13$, 2, 11, 8, 9, 14, 7, 4, 5.
- The length of the sequence before full repetition is known as the cycle length (period) This example has a period of 16
- Some generators do not repeat an initial portion of the sequence referred to as the "tail" of the sequence

Desirable Properties

Random number generation routines should be:

- Computationally efficient
- Portable
- Have sufficiently long cycle
- Replicable (given the same seed)
- Helps program debugging
- Helpful when comparing alternative system design
- Should have provision to generate several streams of random numbers
- Closely approximate the ideal statistical properties of uniformity and independence .

Linear Congruential Generator (LCG)

- Commonly used algorithm
- A sequence of integers x_{1}, x_{2}, \ldots between 0 and $m-1$ is generated according to

$$
x=\left(a * x_{i-1}+c\right) \bmod m
$$

\Rightarrow where multiplier a and increment c are constants, m is the modulus and x_{0} is the seed (or starting value)

- Random numbers u_{1}, u_{2}, \ldots are given by $u_{i}=\frac{x_{i}}{m} \quad i=1,2, \ldots$
- The sequence can be reproduced if the seed is known

More on LCG

- Selection of the values of a, c, m, and X_{0} affects the statistical properties of the generator and its cycle length.
- If $c=0$, the generator is called Multiplicative LCG. (Ex Lehmer page 39)

$$
x_{n}=\left(5 * x_{n-1}\right) \bmod 2^{5}
$$

- If $c \neq 0$, the generator is called Mixed LCG

$$
x_{n}=\left(\left(2^{34}+1\right) * x_{n-1}+1\right) \bmod 2^{35}
$$

Even more on LCG

- Can have at most m distinct integers in the sequence
- As soon as any number in the sequence is repeated, the whole sequence is repeated
- Period: number of distinct integers generated before repetition occurs
- Problem: Instead of continuous, the u_{i} 's can only take on discrete values 0 , $1 / m, 2 / m, \ldots,(m-1) / m$
- Solution: m should be selected to be very large in order to achieve the effect of a continuous distribution
(typically, $m>10^{9}$)
- Most digital computers use a binary representation of numbers
- Speed and efficiency are aided by a modulus, m, to be (or close to) a power of 2

Seed Selection

$$
x_{n}=\left(5 * x_{n-1}\right) \bmod 2^{5}
$$

- Using a seed of $x_{0}=1$:
$5,25,29,17,21,9,13,1,5, \ldots$
Period $=8$
- With $x_{0}=2$:

$$
10,18,26,2,10, \ldots
$$

Period is only 4

- Possible period 32

Note: Full period is a nice property but uniformity and independence are more important

Seed Selection

- Seed selection
- Any value in the sequence can be used to "seed" the generator
- Do not use random seeds: such as the time of day
- Cannot reproduce. Cannot guarantee non-overlap.
- Do not use zero:
- Fine for mixed LCGs
- But multiplicative LCGs will stuck at zero
- Avoid even values:
- For multiplicative LCG with modulus $m=2^{k}$, the seed should be odd
- Do not use successive seeds
- May result in strong correlation

Example RNGs

- A currently popular multiplicative LCG is:

$$
x_{n}=\left(7^{5} * x_{n-1}\right) \bmod \left(2^{31}-1\right)
$$

- $2^{31}-1$ is a prime number and 7^{5} is a primitive root of it \rightarrow Full period of 2^{31-2}.
- This generator has been extensively analyzed and shown to be rather good
- Modulus is largest 32 bit integer prime
- $a=\left(7^{5}\right) \bmod \left(2^{31}-1\right)=16807$
- $a=48271$ has been shown to generate slightly more random sequences

Myths About Random-Number Generation

- A complex set of operations leads to random results. It is better to use simple operations that can be analytically evaluated for randomness.
- Random numbers are unpredictable.

Easy to compute the parameters, a, c, and m from a few numbers => LCGs are unsuitable for cryptographic applications

Myths (Cont)

- Some seeds are better than others. May be true for some.

$$
x_{n}=\left(9806 * x_{n-1}+1\right) \bmod \left(2^{17}-1\right)
$$

- Works correctly for all seeds except $x_{0}=37911$
- Stuck at $x_{n}=37911$ forever
- Such generators should be avoided
- Any nonzero seed in the valid range should produce an equally good sequence
- Generators whose period or randomness depends upon the seed should not be used, since an unsuspecting user may not remember to follow all the guidelines

$$
2^{17}-1=131071
$$

Myths (Cont)

- Accurate implementation is not important.
- RNGs must be implemented without any overflow or truncation For example:

$$
x_{n}=1103515245 x_{n-1}+12345 \bmod 2^{31}
$$

Straightforward multiplication above may produce overflow.

$$
2^{31}=2147483648
$$

Testing Random Number Generators

- Two categories of test
- Test for uniformity
- Test for independence
- Passing a test is only a necessary condition and not a sufficient condition
- i.e., if a generator fails a test it implies it is bad but if a generator passes a test it does not necessarily imply it is good.

More on Testing ...

- Testing is not necessary if a well-known simulation package is used or if a well-tested generator is used
- In what follows, we focus on "empirical" tests, that is tests that are applied to an actual sequence of random numbers
- Chi-Square Test
- KS Test

Chi-Square Test

- Prepare a histogram of the empirical data with k cells
- Let O_{i} and E_{i} be the observed and expected frequency of the ith cell, respectively. Compute the following:

$$
X_{0}^{2}=\sum_{i=1}^{k} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

- X_{0}^{2} has a Chi-Square distribution with ($\mathrm{k}-1$) degrees of freedom

Chi-Square Test (continued ...)

- Define a null hypothesis, $H(0)$, that observations come from a specified distribution
- The null hypothesis cannot be rejected at a significance level of α if

$$
X_{0}^{2}<X_{[1-\alpha, k-s-1]}^{2}
$$

meaning of significance level $\alpha=P($ reject $H(0) \mid H(0)$ is true $)$

- s is number parameters in the distribution $s=1$ poisson $s=2$ normal
- There is a Chi-Square table that comparison can be made to

Chi-Square Test Example

Interval	Oi	Ei	Chi-Sq
1	50	50	0
2	48	50	0.08
3	49	50	0.02
4	42	50	1.28
5	52	50	0.08
6	45	50	0.5
7	63	50	3.38
8	54	50	0.32
9	50	50	0
10	47	50	0.18
	500		5.84

- Example: 500 random numbers generated using a random number generator; observations categorized into cells at $k=10$ intervals of 0.1 , between 0 and 1. At level of significance of 0.1 , are these numbers IID $U(0,1)$?
- $X_{0}^{2}=5.84$
- Chi-Sq table $X_{[0.9,9]}^{2}=14.68$
- Hypothesis accepted at significance level of 0.10.

More on Chi-Square Test

- Errors in cells with small E_{i} 's affect the test statistics more than cells with large E_{i} 's.
- Minimum size of E_{i} debated
- recommends a value of 3 or more; if not combine adjacent cells.
- Test designed for discrete distributions and large sample sizes only. For continuous distributions, Chi-Square test is only an approximation
- (i.e., level of significance holds only for $n \rightarrow \infty$).

Kolmogorov-Smirnov (KS) Test

- Difference between observed CDF $F_{0}(x)$ and expected CDF $F_{e}(x)$ should be small; formalizes the idea behind the Q-Q plot.
- Step 1: Rank observations from smallest to largest:

$$
Y_{1} \leq Y_{2} \leq Y_{3} \leq \ldots \leq Y_{n}
$$

- Step 2: Define $F_{o}(x)=\left(\# i: Y_{i} \leq x\right) / n$
- Number of samples $<=x / n$
- Step 3: Compute K as follows:
- $K=\max _{x}\left|F_{e}(x)-F_{0}(x)\right|$
- $\left.K=\max _{1 \leq j \leq n} \frac{j}{n}-F_{e}\left(Y_{j}\right), F_{e}\left(Y_{j}\right)-\frac{j-1}{n}\right\}$

Kolmogorov-Smirnov (KS) Test

Yj	j	$\frac{j}{\boldsymbol{j}}-F_{e}\left(Y_{j}\right)$	$F_{e}\left(Y_{j}\right)-\frac{j-1}{n}$
5	1	0.017896	0.048771
6	2	0.075098	-0.00843
6	3	0.141765	-0.0751
17	4	0.110331	-0.04366
25	5	0.112134	-0.04547
39	6	0.077057	-0.01039
60	7	0.015478	0.051188
61	8	0.076684	-0.01002
72	9	0.086752	-0.02009
74	10	0.143781	-0.07711
104	11	0.086788	-0.02012
150	12	0.02313	0.043537
170	13	0.04935	0.017316
195	14	0.075607	-0.00894
229	15	0.101266	-0.0346
	AX	0.143781	0.051188

- Example: Test if given population is exponential with parameter $\beta=$ 0.01 ; that is $F_{e}(x)=1-e^{-\beta x}$;
- $K_{[0.9,15]}=1.0298$.
- Max is less so observations pass test.

Vs.

K-S Test

- Small Samples
- Continuous Distributions
- Differences between observed and expected cumulative probabilities
- Uses each observation in the sample without any grouping
- Cell size is not a problem
- Exact

Chi-Square Test

- Large Samples
- Discrete Distributions
- Differences between observed and hypothesized probabilities
- Groups observations into small number of cells
- Cells sizes affect the conclusion but no firm guidelines
- Approximate

