
CPSC 531: Random

Numbers
Jonathan Hudson

Department of Computer Science

University of Calgary

http://www.ucalgary.ca/~hudsonj/531F17

Introduction

 In simulations, we generate random values for variables with a specified

distribution

 E.g., model service times using the exponential distribution

 Generation of random values is a two step process

1. Random number generation: Generate random numbers uniformly

distributed between 0 and 1

2. Random variate generation: Transform the above generated random

numbers to obtain numbers satisfying the desired distribution

Pseudo Random Numbers

 Common pseudo random number generators determine the next random

number as a function of the previously generated random number (i.e.,

recursive calculations are applied)

𝑥𝑛 = 𝑓(𝑥𝑛−1, 𝑥𝑛−2, 𝑥𝑥−3, …)

 Random numbers generated, are therefore, deterministic. That is, sequence

of random numbers is known a priori (BEFORE) given the starting number

(called the seed). For this reason, random numbers are known as pseudo

random.

 True random number generator’s would produce numbers that are

independent of those previous

 We can determine quality of uniformity and independence of pseudo

RNG with statistical tests

A Sample Generator

𝑥𝑛 = 5𝑥𝑛−1 + 1 𝑚𝑜𝑑 16

A Sample Generator

𝑥𝑛 = 5𝑥𝑛−1 + 1 𝑚𝑜𝑑 16

 Starting with x0 = 5:

 The first 32 numbers obtained by the above procedure

10, 3, 0, 1, 6, 15, 12, 13, 2, 11, 8, 9, 14, 7, 4, 5, 10, 3, 0, 1, 6, 15, 12, 13,

2, 11, 8, 9, 14, 7, 4, 5.

A Sample Generator

𝑥𝑛 = 5𝑥𝑛−1 + 1 𝑚𝑜𝑑 16

 Starting with x0 = 5:

 The first 32 numbers obtained by the above procedure

10, 3, 0, 1, 6, 15, 12, 13, 2, 11, 8, 9, 14, 7, 4, 5, 10, 3, 0, 1, 6, 15, 12, 13,

2, 11, 8, 9, 14, 7, 4, 5.

 By dividing x's by 16:

0.6250, 0.1875, 0.0000, 0.0625, 0.3750, 0.9375, 0.7500, 0.8125, 0.1250,

0.6875, 0.5000, 0.5625, 0.8750, 0.4375, 0.2500, 0.3125, 0.6250, 0.1875,

0.0000, 0.0625, 0.3750, 0.9375, 0.7500, 0.8125, 0.1250, 0.6875, 0.5000,

0.5625, 0.8750, 0.4375, 0.2500, 0.3125.

A Sample Generator

𝑥𝑛 = 5𝑥𝑛−1 + 1 𝑚𝑜𝑑 16

 Starting with x0 = 5:

 The first 32 numbers obtained by the above procedure

10, 3, 0, 1, 6, 15, 12, 13, 2, 11, 8, 9, 14, 7, 4, 5, 10, 3, 0, 1, 6, 15, 12, 13,

2, 11, 8, 9, 14, 7, 4, 5.

 The length of the sequence before full repetition is known as the cycle length

(period) This example has a period of 16

 Some generators do not repeat an initial portion of the sequence referred

to as the “tail” of the sequence

Desirable Properties

Random number generation routines should be:

 Computationally efficient

 Portable

 Have sufficiently long cycle

 Replicable (given the same seed)

 Helps program debugging

 Helpful when comparing alternative system design

 Should have provision to generate several streams of random numbers

 Closely approximate the ideal statistical properties of uniformity and

independence .

Linear Congruential Generator (LCG)

 Commonly used algorithm

 A sequence of integers 𝑥1, 𝑥2, … between 0 and m-1 is generated according to

𝑥 = (𝑎 ∗ 𝑥𝑖−1 + 𝑐) 𝑚𝑜𝑑 𝑚

 where multiplier a and increment c are constants, m is the modulus

and x0 is the seed (or starting value)

 Random numbers 𝑢1, 𝑢2, … are given by 𝑢𝑖 =
𝑋𝑖

𝑚
𝑖 = 1,2, …

 The sequence can be reproduced if the seed is known

More on LCG

 Selection of the values of 𝑎, 𝑐,𝑚, and 𝑋0 affects the statistical properties of

the generator and its cycle length.

 If 𝑐 = 0, the generator is called Multiplicative LCG. (Ex Lehmer page 39)

𝑥𝑛 = 5 ∗ 𝑥𝑛−1 𝑚𝑜𝑑 25

 If 𝑐 ≠ 0, the generator is called Mixed LCG

𝑥𝑛 = (234 + 1 ∗ 𝑥𝑛−1 + 1) 𝑚𝑜𝑑 235

Even more on LCG

 Can have at most m distinct integers in the sequence

 As soon as any number in the sequence is repeated, the whole sequence is

repeated

 Period: number of distinct integers generated before repetition occurs

 Problem: Instead of continuous, the ui’s can only take on discrete values 0,

1/m, 2/m,…, (m-1)/m

 Solution: m should be selected to be very large in order to achieve the effect of a

continuous distribution

(typically, m > 109)

 Most digital computers use a binary representation of numbers

 Speed and efficiency are aided by a modulus, 𝑚, to be (or close to) a power of 2

Seed Selection

𝑥𝑛 = 5 ∗ 𝑥𝑛−1 𝑚𝑜𝑑 25

 Using a seed of x0 = 1:

5, 25, 29, 17, 21, 9, 13, 1, 5,…

Period = 8

 With x0 = 2:

10, 18, 26, 2, 10,…

Period is only 4

 Possible period 32

Note: Full period is a nice property but uniformity and independence are more

important

Seed Selection

 Seed selection

 Any value in the sequence can be used to “seed” the generator

 Do not use random seeds: such as the time of day

 Cannot reproduce. Cannot guarantee non-overlap.

 Do not use zero:

 Fine for mixed LCGs

 But multiplicative LCGs will stuck at zero

 Avoid even values:

 For multiplicative LCG with modulus m=2k, the seed should be odd

 Do not use successive seeds

 May result in strong correlation

Example RNGs

 A currently popular multiplicative LCG is:

𝑥𝑛 = 75 ∗ 𝑥𝑛−1 𝑚𝑜𝑑(231 − 1)

 231-1 is a prime number and 75 is a primitive root of it

→ Full period of 231-2.

 This generator has been extensively analyzed and shown to be rather good

 Modulus is largest 32 bit integer prime

 𝑎 = 75 𝑚𝑜𝑑 231 − 1 = 16807

 𝑎 = 48271 has been shown to generate slightly more random sequences

Myths About Random-Number

Generation

 A complex set of operations leads to random results.

It is better to use simple operations that can be analytically evaluated for

randomness.

 Random numbers are unpredictable.

Easy to compute the parameters, a, c, and m from a few numbers => LCGs are

unsuitable for cryptographic applications

Myths (Cont)

 Some seeds are better than others. May be true for some.

𝑥𝑛 = 9806 ∗ 𝑥𝑛−1 + 1 𝑚𝑜𝑑 (217 − 1)

 Works correctly for all seeds except x0 = 37911

 Stuck at xn= 37911 forever

 Such generators should be avoided

 Any nonzero seed in the valid range should produce an equally good sequence

 Generators whose period or randomness depends upon the seed should not be used,

since an unsuspecting user may not remember to follow all the guidelines

217 − 1 = 131071

Myths (Cont)

 Accurate implementation is not important.

 RNGs must be implemented without any overflow or truncation

For example:

𝑥𝑛 = 1103515245𝑥𝑛−1 + 12345 𝑚𝑜𝑑 231

Straightforward multiplication above may produce overflow.

231 = 2147483648

Testing Random Number Generators

 Two categories of test

 Test for uniformity

 Test for independence

 Passing a test is only a necessary condition and not a sufficient condition

 i.e., if a generator fails a test it implies it is bad but if a generator passes

a test it does not necessarily imply it is good.

More on Testing ...

 Testing is not necessary if a well-known simulation package is used or if a

well-tested generator is used

 In what follows, we focus on “empirical” tests, that is tests that are applied

to an actual sequence of random numbers

 Chi-Square Test

 KS Test

Chi-Square Test

 Prepare a histogram of the empirical data with k cells

 Let 𝑂𝑖 and 𝐸𝑖 be the observed and expected frequency of the 𝑖𝑡ℎ cell,

respectively. Compute the following:

𝑋0
2 =

𝑖=1

𝑘
𝑂𝑖 − 𝐸𝑖

2

𝐸𝑖

 𝑋0
2 has a Chi-Square distribution with (k-1) degrees of freedom

Chi-Square Test (continued ...)

 Define a null hypothesis, 𝐻(0), that observations come from a specified

distribution

 The null hypothesis cannot be rejected at a significance level of 𝛼 if

𝑋0
2 < 𝑋[1−𝛼,𝑘−𝑠−1]

2

meaning of significance level 𝛼 = 𝑃 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻 0 𝐻 0 𝑖𝑠 𝑡𝑟𝑢𝑒)

 s is number parameters in the distribution 𝑠 = 1 poisson 𝑠 = 2 normal

 There is a Chi-Square table that comparison can be made to

Chi-Square Test Example

 Example: 500 random numbers

generated using a random number

generator; observations categorized

into cells at 𝑘 = 10 intervals of 0.1,

between 0 and 1. At level of

significance of 0.1, are these

numbers IID 𝑈(0,1)?

 𝑋0
2 = 5.84

 Chi-Sq table 𝑋[0.9,9]
2 = 14.68

 Hypothesis accepted at significance

level of 0.10.

Interval Oi Ei Chi-Sq

1 50 50 0

2 48 50 0.08

3 49 50 0.02

4 42 50 1.28

5 52 50 0.08

6 45 50 0.5

7 63 50 3.38

8 54 50 0.32

9 50 50 0

10 47 50 0.18

500 5.84

More on Chi-Square Test

 Errors in cells with small 𝐸𝑖’s affect the test statistics more than cells with

large 𝐸𝑖’s.

 Minimum size of 𝐸𝑖 debated

 recommends a value of 3 or more; if not combine adjacent cells.

 Test designed for discrete distributions and large sample sizes only. For

continuous distributions, Chi-Square test is only an approximation

 (i.e., level of significance holds only for 𝑛 → ∞).

Kolmogorov-Smirnov (KS) Test

 Difference between observed CDF 𝐹0(𝑥) and expected CDF 𝐹𝑒(𝑥) should be

small; formalizes the idea behind the Q-Q plot.

 Step 1: Rank observations from smallest to largest:

𝑌1 ≤ 𝑌2 ≤ 𝑌3 ≤ … ≤ 𝑌𝑛

 Step 2: Define 𝐹𝑜 𝑥 = (#𝑖: 𝑌𝑖 ≤ 𝑥)/𝑛

 Number of samples <= x / n

 Step 3: Compute K as follows:

 𝐾 = max
𝑥

|𝐹𝑒 𝑥 − 𝐹0(𝑥)|

 𝐾 = max
1≤𝑗≤𝑛

{
𝑗

𝑛
− 𝐹𝑒 𝑌𝑗 , 𝐹𝑒 𝑌𝑗 −

𝑗−1

𝑛
}

Kolmogorov-Smirnov (KS) Test

 Example: Test if given population is

exponential with parameter 𝛽 =

0.01; that is 𝐹𝑒 𝑥 = 1 – 𝑒–𝛽𝑥;

 𝐾[0.9,15] = 1.0298.

 Max is less so observations pass test.

Yj j 𝒋

𝒏
− 𝑭𝒆 𝒀𝒋 𝑭𝒆 𝒀𝒋 −

𝒋 − 𝟏

𝒏

5 1 0.017896 0.048771

6 2 0.075098 -0.00843

6 3 0.141765 -0.0751

17 4 0.110331 -0.04366

25 5 0.112134 -0.04547

39 6 0.077057 -0.01039

60 7 0.015478 0.051188

61 8 0.076684 -0.01002

72 9 0.086752 -0.02009

74 10 0.143781 -0.07711

104 11 0.086788 -0.02012

150 12 0.02313 0.043537

170 13 0.04935 0.017316

195 14 0.075607 -0.00894

229 15 0.101266 -0.0346

MAX 0.143781 0.051188

Vs.

K-S Test Chi-Square Test

• Small Samples

• Continuous Distributions

• Differences between observed

and expected cumulative

probabilities

• Uses each observation in the

sample without any grouping

• Cell size is not a problem

• Exact

• Large Samples

• Discrete Distributions

• Differences between observed

and hypothesized probabilities

• Groups observations into small

number of cells

• Cells sizes affect the conclusion

but no firm guidelines

• Approximate

