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Introduction

 In simulations, we generate random values for variables with a specified 

distribution 

 E.g., model service times using the exponential distribution 

 Generation of random values is a two step process 

1. Random number generation: Generate random numbers uniformly 

distributed between 0 and 1 

2. Random variate generation: Transform the above generated random 

numbers to obtain numbers satisfying the desired distribution



Pseudo Random Numbers

 Common pseudo random number generators determine the next random 

number as a function of the previously generated random number (i.e., 

recursive calculations are applied)

𝑥𝑛 = 𝑓(𝑥𝑛−1, 𝑥𝑛−2, 𝑥𝑥−3, … )

 Random numbers generated, are therefore, deterministic. That is, sequence 

of random numbers is known a priori (BEFORE) given the starting number 

(called the seed). For this reason, random numbers are known as pseudo 

random.

 True random number generator’s would produce numbers that are 

independent of those previous

 We can determine quality of uniformity and independence of pseudo 

RNG with statistical tests



A Sample Generator

𝑥𝑛 = 5𝑥𝑛−1 + 1 𝑚𝑜𝑑 16



A Sample Generator

𝑥𝑛 = 5𝑥𝑛−1 + 1 𝑚𝑜𝑑 16

 Starting with x0 = 5:

 The first 32 numbers obtained by the above procedure 

10, 3, 0, 1, 6, 15, 12, 13, 2, 11, 8, 9, 14, 7, 4, 5, 10, 3, 0, 1, 6, 15, 12, 13, 

2, 11, 8, 9, 14, 7, 4, 5. 



A Sample Generator

𝑥𝑛 = 5𝑥𝑛−1 + 1 𝑚𝑜𝑑 16

 Starting with x0 = 5:

 The first 32 numbers obtained by the above procedure 

10, 3, 0, 1, 6, 15, 12, 13, 2, 11, 8, 9, 14, 7, 4, 5, 10, 3, 0, 1, 6, 15, 12, 13, 

2, 11, 8, 9, 14, 7, 4, 5. 

 By dividing x's by 16:

0.6250, 0.1875, 0.0000, 0.0625, 0.3750, 0.9375, 0.7500, 0.8125, 0.1250, 

0.6875, 0.5000, 0.5625, 0.8750, 0.4375, 0.2500, 0.3125, 0.6250, 0.1875, 

0.0000, 0.0625, 0.3750, 0.9375, 0.7500, 0.8125, 0.1250, 0.6875, 0.5000, 

0.5625, 0.8750, 0.4375, 0.2500, 0.3125. 



A Sample Generator

𝑥𝑛 = 5𝑥𝑛−1 + 1 𝑚𝑜𝑑 16

 Starting with x0 = 5:

 The first 32 numbers obtained by the above procedure 

10, 3, 0, 1, 6, 15, 12, 13, 2, 11, 8, 9, 14, 7, 4, 5, 10, 3, 0, 1, 6, 15, 12, 13, 

2, 11, 8, 9, 14, 7, 4, 5. 

 The length of the sequence before full repetition is known as the cycle length 

(period) This example has a period of 16

 Some generators do not repeat an initial portion of the sequence referred 

to as the “tail” of the sequence



Desirable Properties

Random number generation routines should be: 

 Computationally efficient

 Portable 

 Have sufficiently long cycle 

 Replicable (given the same seed) 

 Helps program debugging

 Helpful when comparing alternative system design

 Should have provision to generate several streams of random numbers

 Closely approximate the ideal statistical properties of uniformity and 

independence .



Linear Congruential Generator (LCG)

 Commonly used algorithm

 A sequence of integers 𝑥1, 𝑥2, … between 0 and m-1 is generated according to

𝑥 = (𝑎 ∗ 𝑥𝑖−1 + 𝑐) 𝑚𝑜𝑑 𝑚

 where multiplier a and increment c are constants, m is the modulus

and x0 is the seed (or starting value)

 Random numbers 𝑢1, 𝑢2, … are given by 𝑢𝑖 =
𝑋𝑖

𝑚
𝑖 = 1,2, …

 The sequence can be reproduced if the seed is known



More on LCG

 Selection of the values of 𝑎, 𝑐,𝑚, and 𝑋0 affects the statistical properties of 

the generator and its cycle length. 

 If 𝑐 = 0, the generator is called Multiplicative LCG. (Ex Lehmer page 39)

𝑥𝑛 = 5 ∗ 𝑥𝑛−1 𝑚𝑜𝑑 25

 If 𝑐 ≠ 0, the generator is called Mixed LCG

𝑥𝑛 = ( 234 + 1 ∗ 𝑥𝑛−1 + 1) 𝑚𝑜𝑑 235



Even more on LCG

 Can have at most m distinct integers in the sequence

 As soon as any number in the sequence is repeated, the whole sequence is 

repeated

 Period: number of distinct integers generated before repetition occurs 

 Problem: Instead of continuous, the ui’s can only take on discrete values 0, 

1/m, 2/m,…, (m-1)/m

 Solution: m should be selected to be very large in order to achieve the effect of a 

continuous distribution 

(typically, m > 109)

 Most digital computers use a binary representation of numbers

 Speed and efficiency are aided by a modulus, 𝑚, to be (or close to) a power of 2



Seed Selection

𝑥𝑛 = 5 ∗ 𝑥𝑛−1 𝑚𝑜𝑑 25

 Using a seed of x0 = 1:

5,  25,  29,  17,  21,  9,  13,  1,  5,…

Period = 8

 With  x0 = 2:

10,  18,  26,  2,  10,…

Period is only 4

 Possible period 32

Note: Full period is a nice property but uniformity and independence are more 

important



Seed Selection

 Seed selection

 Any value in the sequence can be used to “seed” the generator

 Do not use random seeds: such as the time of day

 Cannot reproduce. Cannot guarantee non-overlap.

 Do not use zero:

 Fine for mixed LCGs

 But multiplicative LCGs will stuck at zero

 Avoid even values: 

 For multiplicative LCG with modulus m=2k, the seed should be odd

 Do not use successive seeds 

 May result in strong correlation



Example RNGs

 A currently popular multiplicative LCG is:

𝑥𝑛 = 75 ∗ 𝑥𝑛−1 𝑚𝑜𝑑(231 − 1)

 231-1 is a prime number and 75 is a primitive root of it 

→ Full period of 231-2. 

 This generator has been extensively analyzed and shown to be rather good

 Modulus is largest 32 bit integer prime

 𝑎 = 75 𝑚𝑜𝑑 231 − 1 = 16807

 𝑎 = 48271 has been shown to generate slightly more random sequences



Myths About Random-Number 

Generation

 A complex set of operations leads to random results.  

It is better to use simple operations that can be analytically evaluated for 

randomness.

 Random numbers are unpredictable.  

Easy to compute the parameters, a, c, and m from a few numbers => LCGs are 

unsuitable for cryptographic applications  



Myths (Cont)

 Some seeds are better than others. May be true for some.

𝑥𝑛 = 9806 ∗ 𝑥𝑛−1 + 1 𝑚𝑜𝑑 (217 − 1)

 Works correctly for all seeds except x0 = 37911

 Stuck at xn= 37911 forever

 Such generators should be avoided 

 Any nonzero seed in the valid range should produce an equally good sequence   

 Generators whose period or randomness depends upon the seed should not be used, 

since an unsuspecting user may not remember to follow all the guidelines  

217 − 1 = 131071



Myths (Cont)

 Accurate implementation is not important. 

 RNGs must be implemented without any overflow or truncation 

For example:

𝑥𝑛 = 1103515245𝑥𝑛−1 + 12345 𝑚𝑜𝑑 231

Straightforward multiplication above may produce overflow.

231 = 2147483648



Testing Random Number Generators

 Two categories of test

 Test for uniformity

 Test for independence

 Passing a test is only a necessary condition and not a sufficient condition

 i.e., if a generator fails a test it implies it is bad but if a generator passes 

a test it does not necessarily imply it is good.



More on Testing ...

 Testing is not necessary if a well-known simulation package is used or if a 

well-tested generator is used

 In what follows, we focus on “empirical” tests, that is tests that are applied 

to an actual sequence of random numbers

 Chi-Square Test

 KS Test



Chi-Square Test

 Prepare a histogram of the empirical data with k cells

 Let 𝑂𝑖 and 𝐸𝑖 be the observed and expected frequency of the 𝑖𝑡ℎ cell, 

respectively. Compute the following:

𝑋0
2 =

𝑖=1

𝑘
𝑂𝑖 − 𝐸𝑖

2

𝐸𝑖

 𝑋0
2 has a Chi-Square distribution with (k-1) degrees of freedom



Chi-Square Test (continued ...)

 Define a null hypothesis, 𝐻(0), that observations come from a specified 

distribution

 The null hypothesis cannot be rejected at a significance level of 𝛼 if

𝑋0
2 < 𝑋[1−𝛼,𝑘−𝑠−1]

2

meaning of significance level 𝛼 = 𝑃 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻 0 𝐻 0 𝑖𝑠 𝑡𝑟𝑢𝑒)

 s is number parameters in the distribution 𝑠 = 1 poisson 𝑠 = 2 normal

 There is a Chi-Square table that comparison can be made to



Chi-Square Test Example

 Example: 500 random numbers 

generated using a random number 

generator; observations categorized 

into cells at 𝑘 = 10 intervals of 0.1, 

between 0 and 1. At level of 

significance of 0.1, are these 

numbers IID 𝑈(0,1)?

 𝑋0
2 = 5.84

 Chi-Sq table 𝑋[0.9,9]
2 = 14.68

 Hypothesis accepted at significance 

level of 0.10. 

Interval Oi Ei Chi-Sq

1 50 50 0

2 48 50 0.08

3 49 50 0.02

4 42 50 1.28

5 52 50 0.08

6 45 50 0.5

7 63 50 3.38

8 54 50 0.32

9 50 50 0

10 47 50 0.18

500 5.84



More on Chi-Square Test

 Errors in cells with small 𝐸𝑖’s affect the test statistics more than cells with 

large 𝐸𝑖’s.

 Minimum size of 𝐸𝑖 debated

 recommends a value of 3 or more; if not combine adjacent cells.

 Test designed for discrete distributions and large sample sizes only. For 

continuous distributions, Chi-Square test is only an approximation 

 (i.e., level of significance holds only for 𝑛 → ∞).



Kolmogorov-Smirnov (KS) Test

 Difference between observed CDF 𝐹0(𝑥) and expected CDF 𝐹𝑒(𝑥) should be 

small; formalizes the idea behind the Q-Q plot.

 Step 1: Rank observations from smallest to largest:

𝑌1 ≤ 𝑌2 ≤ 𝑌3 ≤ … ≤ 𝑌𝑛

 Step 2: Define 𝐹𝑜 𝑥 = (#𝑖: 𝑌𝑖 ≤ 𝑥)/𝑛

 Number of samples <= x / n

 Step 3: Compute K as follows:

 𝐾 = max
𝑥

|𝐹𝑒 𝑥 − 𝐹0(𝑥)|

 𝐾 = max
1≤𝑗≤𝑛

{
𝑗

𝑛
− 𝐹𝑒 𝑌𝑗 , 𝐹𝑒 𝑌𝑗 −

𝑗−1

𝑛
}



Kolmogorov-Smirnov (KS) Test

 Example: Test if given population is 

exponential with parameter 𝛽 =

0.01; that is 𝐹𝑒 𝑥 = 1 – 𝑒–𝛽𝑥;

 𝐾[0.9,15] = 1.0298.

 Max is less so observations pass test.

Yj j 𝒋

𝒏
− 𝑭𝒆 𝒀𝒋 𝑭𝒆 𝒀𝒋 −

𝒋 − 𝟏

𝒏

5 1 0.017896 0.048771

6 2 0.075098 -0.00843

6 3 0.141765 -0.0751

17 4 0.110331 -0.04366

25 5 0.112134 -0.04547

39 6 0.077057 -0.01039

60 7 0.015478 0.051188

61 8 0.076684 -0.01002

72 9 0.086752 -0.02009

74 10 0.143781 -0.07711

104 11 0.086788 -0.02012

150 12 0.02313 0.043537

170 13 0.04935 0.017316

195 14 0.075607 -0.00894

229 15 0.101266 -0.0346

MAX 0.143781 0.051188



Vs.

K-S Test Chi-Square Test

• Small Samples

• Continuous Distributions

• Differences between observed 

and expected cumulative 

probabilities

• Uses each observation in the 

sample without any grouping

• Cell size is not a problem

• Exact

• Large Samples

• Discrete Distributions

• Differences between observed 

and hypothesized probabilities

• Groups observations into small 

number of cells

• Cells sizes affect the conclusion 

but no firm guidelines

• Approximate


