CPSC 531:

UNIVERSITY OF
CALGARY

System Modeling and Simulation

Carey Williamson

Department of Computer Science University of Calgary Fall 2017

Outline

- Probability and random variables
- Random experiment and random variable
- Probability mass/density functions
- Expectation, variance, covariance, correlation
- Probability distributions
- Discrete probability distributions
- Continuous probability distributions
- Empirical probability distributions

Random Experiment

- An experiment is called random if the outcome of the experiment is uncertain
- For a random experiment:
- The set of all possible outcomes is known before the experiment
- The outcome of the experiment is not known in advance
- Sample space Ω of an experiment is the set of all possible outcomes of the experiment
- Example: Consider random experiment of tossing a coin twice. Sample space is:

$$
\Omega=\{(H, H),(H, T),(T, H),(T, T)\}
$$

Probability of Events

- An event is a subset of sample space

Example 1: in tossing a coin twice, $E=\{(H, H)\}$ is the event of having two heads
Example 2: in tossing a coin twice, $E=\{(H, H),(H, T)\}$ is the event of having a head in the first toss

- Probability of an event E is a numerical measure of the likelihood that event E will occur, expressed as a number between 0 and 1 ,

$$
0 \leq \mathbb{P}(E) \leq 1
$$

- If all possible outcomes are equally likely: $\mathbb{P}(E)=|E| /|\Omega|$
- Probability of the sample space is $1: \mathbb{P}(\Omega)=1$

Joint Probability

- Probability that two events A and B occur in a single experiment:

$$
\mathbb{P}(A \text { and } B)=\mathbb{P}(A \cap B)
$$

- Example: drawing a single card at random from a regular deck of cards, probability of getting a red king
- A: getting a red card
- B : getting a king
- $\mathbb{P}(A \cap B)=\frac{2}{52}$

Independent Events

\square Two events A and B are independent if the occurrence of one does not affect the occurrence of the other:

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)
$$

- Example: drawing a single card at random from a regular deck of cards, probability of getting a red king
- A : getting a red card $\Rightarrow \mathbb{P}(A)=26 / 52$
- B : getting a king $\Rightarrow \mathbb{P}(B)=4 / 52$
- $\mathbb{P}(A \cap B)=\frac{2}{52}=\mathbb{P}(A) \mathbb{P}(B) \Rightarrow A$ and B are independent

Mutually Exclusive Events

- Events A and B are mutually exclusive if the occurrence of one implies the non-occurrence of the other, i.e., $A \cap B=\phi$:

$$
\mathbb{P}(A \cap B)=0
$$

- Example: drawing a single card at random from a regular deck of cards, probability of getting a red club
$-A$: getting a red card
$-B$: getting a club
$-\mathbb{P}(A \cap B)=0$
- Complementary event of event A is event [not A], i.e., the event that A does not occur, denoted by \bar{A}
- Events A and \bar{A} are mutually exclusive
$-\mathbb{P}(\bar{A})=1-\mathbb{P}(A)$

Union Probability

- Union of events A and B :

$$
\mathbb{P}(A \text { or } B)=\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)
$$

- If A and B are mutually exclusive:

$$
\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)
$$

- Example: drawing a single card at random from a regular deck of cards, probability of getting a red card or a king
$-A$: getting a red card $\Rightarrow \mathbb{P}(A)=26 / 52$
$-B$: getting a king $\Rightarrow \mathbb{P}(B)=4 / 52$
$-\mathbb{P}(A \cap B)=\frac{2}{52}$
$-\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)=\frac{26}{52}+\frac{4}{52}-\frac{2}{52}=\frac{28}{52}$

Conditional Probability

- Probability of event A given the occurrence of some event B :

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

- If events A and B are independent:

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A) \mathbb{P}(B)}{\mathbb{P}(B)}=P(A)
$$

- Example: drawing a single card at random from a regular deck of cards, probability of getting a king given that the card is red
$-A$: getting a red card $\Rightarrow \mathbb{P}(A)=26 / 52$
$-B$: getting a king $\Rightarrow \mathbb{P}(B)=4 / 52$
$-\mathbb{P}(A \cap B)=\frac{2}{52}$
$-\mathbb{P}(B \mid A)=\frac{\mathbb{P}(B \cap A)}{\mathbb{P}(A)}=\frac{2}{26}=\mathbb{P}(B)$

Types of Random Variables

- Discrete
- Random variables whose set of possible values can be written as a finite or infinite sequence
- Example: number of requests sent to a web server
- Continuous
- Random variables that take a continuum of possible values
- Example: time between requests sent to a web server

Probability Density Function (PDF)

- X : continuous random variable
- $f(x)$: probability density function of X
- Note:

$$
f(x)=\frac{d}{d x} F(x)
$$

$$
\begin{aligned}
& -\mathbb{P}(X=x)=0!! \\
& -f(x) \neq \mathbb{P}(X=x) \\
& -\mathbb{P}(x \leq X \leq x+\Delta x) \approx f(x) \Delta \mathrm{x}
\end{aligned}
$$

- Properties:

$$
\begin{aligned}
& -\mathbb{P}(a \leq X \leq b)=\int_{a}^{b} f(x) d x \\
& -\int_{-\infty}^{+\infty} f(x) d x=1
\end{aligned}
$$

Cumulative Distribution Function (CDF)

- X : discrete or continuous random variable
- $F(x)$: cumulative probability distribution function of X, or simply, probability distribution function of X

$$
F(x)=\mathbb{P}(X \leq x)
$$

- If X is discrete, then $F(x)=\sum_{x_{i} \leq x} p\left(x_{i}\right)$
- If X is continuous, then $F(x)=\int_{-\infty}^{x} f(t) d t$
- Properties
$-F(x)$ is a non-decreasing function, i.e., if $a<b$, then $F(a) \leq F(b)$
$-\lim _{x \rightarrow+\infty} F(x)=1$, and $\lim _{x \rightarrow-\infty} F(x)=0$
- All probability questions about X can be answered in terms of the CDF, e.g.:

$$
\mathbb{P}(a<X \leq b)=F(b)-F(a), \text { for all } a \leq b
$$

Expectation of a Random Variable

- Mean or Expected Value:

$$
\mu=E[X]=\left\{\begin{array}{lc}
\sum_{i=1}^{n} x_{i} p\left(x_{i}\right) & \text { discrete } X \\
\int_{-\infty}^{\infty} x f(x) d x & \text { continuous } X
\end{array}\right.
$$

- Example: numberiof heads in tossing three coins

$$
\begin{aligned}
E[X] & =0 \cdot p(0)+1 \cdot p(1)+2 \cdot p(2)+3 \cdot p(3) \\
& =1 \cdot 3 / 8+2 \cdot 3 / 8+3 \cdot 1 / 8 \\
& =12 / 8 \\
& =1.5
\end{aligned}
$$

Properties of Expectation

- X, Y : two random variables
- a, b : two constants

$$
\begin{gathered}
E[a X]=a E[X] \\
E[X+b]=E[X]+b \\
E[X+Y]=E[X]+E[Y] \\
E[X-Y]=E[X]-E[Y]
\end{gathered}
$$

Misuses of Expectations

- Multiplying means to get the mean of a product

$$
E[X Y] \neq E[X] E[Y]
$$

- Example: tossing three coins
$-X$: number of heads
$-Y$: number of tails

$$
\begin{gathered}
-E[X]=E[Y]=3 / 2 \Rightarrow E[X] E[Y]=9 / 4 \\
-E[X Y]=3 / 2 \\
\Rightarrow E[X Y] \neq E[X] E[Y]
\end{gathered}
$$

- Dividing means to get the mean of a ratio

$$
E\left[\frac{X}{Y}\right] \neq \frac{E[X]}{E[Y]}
$$

Variance of a Random Variable

- The variance is a measure of the spread of a distribution around its mean value
■ Variance is symbolized by $V[X]$ or $\operatorname{Var}[X]$ or σ^{2} :
- Mean is a way to describe the location of a distribution
- Variance is a way to capture its scale or degree of being spread out
- The unit of variance is the square of the unit of the original variable
- σ : standard deviation
- Defined as the square root of variance $V[X]$
- Expressed in the same units as the mean

Variance of a Random Variable

- Variance: The expected value of the square of distance between a random variable and its mean

$$
\sigma^{2}=V[X]
$$

$$
\begin{aligned}
& =E\left[(X-\mu)^{2}\right]=\left\{\begin{array}{lc}
\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} p\left(x_{i}\right) & \text { discrete } X \\
\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x & \text { continuous } X
\end{array}\right. \\
& \text { nere, } \mu=E[X]
\end{aligned}
$$

- Equivalently:

$$
\sigma^{2}=E\left[X^{2}\right]-(E[X])^{2}
$$

- X, Y : two random variables
- a, b : two constants

$$
\begin{gathered}
V[X] \geq 0 \\
V[a X]=a^{2} V[X] \\
V[X+b]=V[X]
\end{gathered}
$$

- If X and Y are independent:

$$
V[X+Y]=V[X]+V[Y]
$$

Coefficient of Variation

- Coefficient of Variation:

$$
\mathrm{CV}=\frac{\text { Standard Deviation }}{\text { Mean }}=\frac{\sigma}{\mu}
$$

- Example: number of heads in tossing three coins

$$
\mathrm{CV}=\frac{\sqrt{3 / 4}}{3 / 2}=\frac{1}{\sqrt{3}}
$$

Covariance

- Covariance between random variables X and Y denoted by $\operatorname{Cov}(X, Y)$ or $\sigma_{X, Y}^{2}$ is a measure of how much X and Y change together

$$
\begin{aligned}
\sigma_{X, Y}^{2} & =E[(X-E[X])(Y-E[Y])] \\
& =E[X Y]-E[X] E[Y]
\end{aligned}
$$

- For independent variables, the covariance is zero:

$$
E[X Y]=E[X] E[Y]
$$

- Note: Although independence always implies zero covariance, the reverse is not true

Covariance

- Example: tossing three coins
$-X$: number of heads
$-Y$: number of tails
$-E[X]=E[Y]=3 / 2$
- $E[X Y]$?
$-X$ and Y depend on each other
$-Y=3-X$
$-E[X Y]=0 \times P(0)+2 \times P(2)$ $=3 / 2$
- $\sigma_{X, Y}^{2}=E[X Y]-E[X] E[Y]$

$$
\begin{aligned}
& =3 / 2-3 / 2 \times 3 / 2 \\
& =-3 / 4
\end{aligned}
$$

\boldsymbol{x}	\boldsymbol{y}	$\boldsymbol{x y}$	$\boldsymbol{p}(\boldsymbol{x})$
0	3	0	$1 / 8$
1	2	2	$3 / 8$
2	1	2	$3 / 8$
3	0	0	$1 / 8$

$x y$	$p(x y)$
0	$2 / 8$
2	$6 / 8$

Correlation

E Correlation Coefficient between random variables X and Y, denoted by $\rho_{X, Y}$, is the normalized value of their covariance:

$$
\rho_{X, Y}=\frac{\sigma_{X, Y}^{2}}{\sigma_{X} \sigma_{Y}}
$$

- Indicates the strength and direction of a linear relationship between two random variables
- The correlation always lies between -1 and +1
- Example: tossing three coins

Negative linear

correlation

Autocorrelation

- Correlation Coefficient between a random variable and itself at different time lags within a sequence

$$
\rho_{X, X}=\frac{\sigma_{X, X}^{2}}{\sigma_{X} \sigma_{X}}
$$

- Indicates the strength and direction of a linear relationship between two random variables
- The correlation always lies between -1 and +1
- It is always +1 at lag 0

Demo: Correlation and Autocorrelation

- Correlation (if desired) can be induced by sharing or re-using random numbers between two (or more) random variables
- Example: height and weight of medical patients
- Example: a coin that remembers some of its recent history

Negative linear
correlation

No correlation
Positive linear
correlation
$+1$

Geometric Distribution

- X : number of Bernoulli trials until achieving the first success
- X is a geometric random variable with success probability p
- PMF: probability of $k(\mathrm{k}=1,2,3, \ldots)$ trials until the first success

$$
p(k)=p(1-p)^{k-1}
$$

- CDF: $F(k)=1-(1-p)^{k}$
- Properties:

$$
E[X]=\frac{1}{p}, \text { and } V[X]=\frac{1-p}{p^{2}}
$$

Example: Geometric Distribution

Geometric distribution PMF

Geometric distribution CDF

Uniform Distribution

- A random variable X has continuous uniform distribution on the interval $[a, b]$, if its PDF and CDF are:
- PDF: $f(x)=\frac{1}{b-a}$, for $a \leq x \leq b$

- Properties:

$$
E[X]=\frac{a+b}{2} \text {, and } V[X]=\frac{(a-b)^{2}}{12}
$$

Uniform Distribution Properties

- $\mathbb{P}\left(x_{1}<X<x_{2}\right)$ is proportional to the length of the interval $x_{2}-x_{1}$

$$
\mathbb{P}\left(x_{1}<X<x_{2}\right)=\frac{x_{2}-x_{1}}{b-a}
$$

- Special case: standard uniform distribution denoted by $\mathrm{X} \sim U(0,1)$
- Very useful for random number generation in simulations
- A random variable X is exponentially distributed with parameter λ if its PDF and CDF are:
-PDF: $f(x)=\lambda e^{-\lambda x}$, for $x \geq 0$
-CDF: $F(x)=1-e^{-\lambda x}$, for $x \geq 0$
- Properties:

$$
E[X]=\frac{1}{\lambda^{\prime}} \text { and } V[X]=\frac{1}{\lambda^{2}}
$$

- The exponential distribution describes the time between consecutive events in a Poisson process of rate λ

Example: Exponential Distribution

Exponential distribution PDF

Exponential distribution CDF

Light Bulb Testing (1 of 5)

- Scenario: Walmart has a giant bin of lightbulbs on sale. You buy one and bring it home for testing and observation.
- Assume: All light bulbs last exactly 100 hours.
- Observation: Your light bulb has worked for 70 hours.
- Question: How much longer is it expected to last?
- Answer: 30 hours

Light Bulb Testing (2 of 5)

- Scenario: Walmart has a giant bin of lightbulbs on sale. You buy one and bring it home for testing and observation.
- Assume: Half of the light bulbs last exactly 50 hours, while the other half last exactly 150 hours. The mean is 100 hours.
- Observation: Your light bulb has worked for 70 hours.
- Question: How much longer is it expected to last?
- Answer: 80 hours

Light Bulb Testing (3 of 5)

- Scenario: Walmart has a giant bin of lightbulbs on sale. You buy one and bring it home for testing and observation.
- Assume: Half of the light bulbs last exactly 50 hours, while the other half last exactly 150 hours. The mean is 100 hours.
- Observation: Your light bulb has worked for 40 hours.
- Question: How much longer is it expected to last?
- Answer: 60 hours

Light Bulb Testing (4 of 5)

- Scenario: Walmart has a giant bin of lightbulbs on sale. You buy one and bring it home for testing and observation.
- Assume: Light bulbs have a working duration that is uniformly distributed (continuous) between 50 hours and 150 hours. The mean is 100 hours.
- Observation: Your light bulb has worked for 70 hours.
- Question: How much longer is it expected to last?
- Answer: 40 hours

Light Bulb Testing (5 of 5)

- Scenario: Walmart has a giant bin of lightbulbs on sale. You buy one and bring it home for testing and observation.
- Assume: Light bulbs have a working duration that is exponentially distributed with a mean of 100 hours.
- Observation: Your light bulb has worked for 70 hours.
- Question: How much longer is it expected to last?
- Answer: 100 hours

Memoryless Property

- Memoryless is a property of certain probability distributions such as exponential distribution and geometric distribution
- future events do not depend on the past events, but only on the present event
- Formally: random variable X has a memoryless distribution if

$$
\mathbb{P}(X>t+s \mid X>s)=\mathbb{P}(X>t), \text { for } s, \mathrm{t} \geq 0
$$

- Example: The probability that you will wait t more minutes given that you have already been waiting s minutes is the same as the probability that you wait for more than t minutes from the beginning!

Example: Exponential Distribution

X : discrete or continuous random variable

- $F(x)$: cumulative probability distribution function of X, or simply, probability distribution function of X

$$
F(x)=\mathbb{P}(X \leq x)
$$

- If X is discrete, then $F(x)=\sum_{x_{i} \leq x} p\left(x_{i}\right)$
- If X is continuous, then $F(x)=\int_{-\infty}^{x} f(t) d t$
- Properties
- $F(x)$ is a non-decreasing function, i.e., if $a<b$, then $F(a) \leq F(b)$
- $\lim _{x \rightarrow+\infty} F(x)=1$, and $\lim _{x \rightarrow-\infty} F(x)=0$
- All probability questions about X can be answered in terms of the CDF, e.g.:

$$
\mathbb{P}(a \leq X \leq b)=F(b)-F(a), \text { for all } a \leq b
$$

