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 Probability and random variables 

—Random experiment and random variable 

—Probability mass/density functions 

—Expectation, variance, covariance, correlation 

 Probability distributions 

—Discrete probability distributions 

—Continuous probability distributions 

—Empirical probability distributions 

 

 

Outline 

2 





Random Experiment 
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

Probability of Events 
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

Joint Probability 
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

Independent Events 
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

Mutually Exclusive Events 
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

Union Probability 
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

Conditional Probability 
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 Discrete 

—Random variables whose set of possible values can be 
written as a finite or infinite sequence 

—Example: number of requests sent to a web server 

 Continuous 

—Random variables that take a continuum of possible values 

—Example: time between requests sent to a web server 

 

Types of Random Variables 
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

Probability Density Function (PDF) 

)()( xF
dx

d
xf 

11 





Cumulative Distribution Function (CDF) 
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

Expectation of a Random Variable 
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

Properties of Expectation 
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 Multiplying means to get the mean of a product 
 

 

 Example: tossing three coins 

—X: number of heads 

—Y: number of tails 

—E[X] = E[Y] = 3/2  E[X]E[Y] = 9/4 

—E[XY] = 3/2  

                    E[XY] ≠ E[X]E[Y] 

 Dividing means to get  the mean of a ratio  
 

Misuses of Expectations 
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

Variance of a Random Variable 

16 



 Variance: The expected value of the square of distance 
between a random variable and its mean 

 

 

 

 

 

     where, μ= E[X]   

 

 Equivalently: 

               σ2 = E[X2] – (E[X])2 

 

 

 

Variance of a Random Variable 
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

Properties of Variance 
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

Coefficient of Variation 
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

Covariance 
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

Covariance 

x y xy p(x) 

0 3 0 1/8 

1 2 2 3/8 

2 1 2 3/8 

3 0 0 1/8 

xy p(xy) 

0 2/8 

2 6/8 
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

Correlation 
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

Autocorrelation 
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 Correlation (if desired) can be induced by sharing or re-using 
random numbers between two (or more) random variables 

 Example: height and weight of medical patients 

 Example: a coin that remembers some of its recent history 

 

 

 

  
 
 

Demo: Correlation and Autocorrelation 
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

Geometric Distribution 
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Example: Geometric Distribution 

Geometric distribution PMF Geometric distribution CDF 





Uniform Distribution 

CDF 

PDF 
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

Uniform Distribution Properties   
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

Exponential Distribution 
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Example: Exponential Distribution 

Exponential distribution PDF Exponential distribution CDF 



 Scenario: Walmart has a giant bin of lightbulbs on sale.  You 
buy one and bring it home for testing and observation. 

 

 Assume: All light bulbs last exactly 100 hours. 

 

 Observation: Your light bulb has worked for 70 hours. 

 

 Question: How much longer is it expected to last? 

 

 Answer:    

 

 

Light Bulb Testing (1 of 5) 
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30 hours 



 Scenario: Walmart has a giant bin of lightbulbs on sale.  You 
buy one and bring it home for testing and observation. 

 

 Assume: Half of the light bulbs last exactly 50 hours, while the 
other half last exactly 150 hours. The mean is 100 hours. 

 

 Observation: Your light bulb has worked for 70 hours. 

 

 Question: How much longer is it expected to last? 

 

 Answer:    

 

 

Light Bulb Testing (2 of 5) 
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80 hours 



 Scenario: Walmart has a giant bin of lightbulbs on sale.  You 
buy one and bring it home for testing and observation. 

 

 Assume: Half of the light bulbs last exactly 50 hours, while the 
other half last exactly 150 hours. The mean is 100 hours. 

 

 Observation: Your light bulb has worked for 40 hours. 

 

 Question: How much longer is it expected to last? 

 

 Answer:    

 

 

Light Bulb Testing (3 of 5) 
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60 hours 



 Scenario: Walmart has a giant bin of lightbulbs on sale.  You 
buy one and bring it home for testing and observation. 

 

 Assume: Light bulbs have a working duration that is uniformly 
distributed (continuous) between 50 hours and 150 hours. 
The mean is 100 hours. 

 

 Observation: Your light bulb has worked for 70 hours. 

 

 Question: How much longer is it expected to last? 

 

 Answer:    

 

 

Light Bulb Testing (4 of 5) 
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40 hours 



 Scenario: Walmart has a giant bin of lightbulbs on sale.  You 
buy one and bring it home for testing and observation. 

 

 Assume: Light bulbs have a working duration that is 
exponentially distributed with a mean of 100 hours. 

 

 Observation: Your light bulb has worked for 70 hours. 

 

 Question: How much longer is it expected to last? 

 

 Answer:    

 

 

Light Bulb Testing (5 of 5) 
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

Memoryless Property 
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Example: Exponential Distribution 


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