CPSC 531:

UNIVERSITY OF
CALGARY

System Modeling and Simulation

Carey Williamson

Department of Computer Science University of Calgary Fall 2017

Overview

- The world a model-builder sees is probabilistic rather than deterministic:
- Some probability model might well describe the variations

Goals:

- Review the fundamental concepts of probability
- Understand the difference between discrete and continuous random variable
- Review the most common probability models

Outline

- Probability and random variables
- Random experiment and random variable
- Probability mass/density functions
- Expectation, variance, covariance, correlation
- Probability distributions
- Discrete probability distributions
- Continuous probability distributions
- Empirical probability distributions

Outline

- Probability and random variables
- Random experiment and random variable
- Probability mass/density functions
- Expectation, variance, covariance, correlation
- Probability distributions
- Discrete probability distributions
- Continuous probability distributions
- Empirical probability distribution

Probability

Is widely used in mathematics, science, engineering, finance and philosophy to draw conclusions about the likelihood of potential events and the underlying mechanics of complex systems

- Probability is a measure of how likely it is for an event to happen
- We measure probability with a number between 0 and 1
- If an event is certain to happen, then the probability of the event is 1
- If an event is certain not to happen, then the probability of the event is 0

Random Experiment

- An experiment is called random if the outcome of the experiment is uncertain
- For a random experiment:
- The set of all possible outcomes is known before the experiment
- The outcome of the experiment is not known in advance
- Sample space Ω of an experiment is the set of all possible outcomes of the experiment
- Example: Consider random experiment of tossing a coin twice. Sample space is:

$$
\Omega=\{(H, H),(H, T),(T, H),(T, T)\}
$$

Probability of Events

- An event is a subset of sample space

Example 1: in tossing a coin twice, $E=\{(H, H)\}$ is the event of having two heads
Example 2: in tossing a coin twice, $E=\{(H, H),(H, T)\}$ is the event of having a head in the first toss

- Probability of an event E is a numerical measure of the likelihood that event E will occur, expressed as a number between 0 and 1 ,

$$
0 \leq \mathbb{P}(E) \leq 1
$$

- If all possible outcomes are equally likely: $\mathbb{P}(E)=|E| /|\Omega|$
- Probability of the sample space is $1: \mathbb{P}(\Omega)=1$

Joint Probability

- Probability that two events A and B occur in a single experiment:

$$
\mathbb{P}(A \text { and } B)=\mathbb{P}(A \cap B)
$$

- Example: drawing a single card at random from a regular deck of cards, probability of getting a red king
$-A$: getting a red card
$-B$: getting a king
$-\mathbb{P}(A \cap B)=\frac{2}{52}$

Independent Events

- Two events A and B are independent if the occurrence of one does not affect the occurrence of the other:

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)
$$

- Example: drawing a single card at random from a regular deck of cards, probability of getting a red king
$-A$: getting a red card $\Rightarrow \mathbb{P}(A)=26 / 52$
$-B$: getting a king $\Rightarrow \mathbb{P}(B)=4 / 52$
$-\mathbb{P}(A \cap B)=\frac{2}{52}=\mathbb{P}(A) \mathbb{P}(B) \Rightarrow A$ and B are independent

Mutually Exclusive Events

- Events A and B are mutually exclusive if the occurrence of one implies the non-occurrence of the other, i.e., $A \cap B=\phi$:

$$
\mathbb{P}(A \cap B)=0
$$

- Example: drawing a single card at random from a regular deck of cards, probability of getting a red club
$-A$: getting a red card
$-B$: getting a club
$-\mathbb{P}(A \cap B)=0$
- Complementary event of event A is event $[\operatorname{not} A]$, i.e., the event that A does not occur, denoted by \bar{A}
- Events A and \bar{A} are mutually exclusive
$-\mathbb{P}(\bar{A})=1-\mathbb{P}(A)$

Union Probability

- Union of events A and B :

$$
\mathbb{P}(A \text { or } B)=\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)
$$

- If A and B are mutually exclusive:

$$
\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)
$$

- Example: drawing a single card at random from a regular deck of cards, probability of getting a red card or a king
$-A$: getting a red card $\Rightarrow \mathbb{P}(A)=26 / 52$
$-B$: getting a king $\Rightarrow \mathbb{P}(B)=4 / 52$
$-\mathbb{P}(A \cap B)=\frac{2}{52}$
$-\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)=\frac{26}{52}+\frac{4}{52}-\frac{2}{52}=\frac{28}{52}$

Conditional Probability

- Probability of event A given the occurrence of some event B :

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

- If events A and B are independent:

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A) \mathbb{P}(B)}{\mathbb{P}(B)}=P(A)
$$

- Example: drawing a single card at random from a regular deck of cards, probability of getting a king given that the card is red
$-A$: getting a red card $\Rightarrow \mathbb{P}(A)=26 / 52$
$-B$: getting a king $\Rightarrow \mathbb{P}(B)=4 / 52$
$-\mathbb{P}(A \cap B)=\frac{2}{52}$
$-\mathbb{P}(B \mid A)=\frac{\mathbb{P}(B \cap A)}{\mathbb{P}(A)}=\frac{2}{26}=\mathbb{P}(B)$

Random Variable

- A numerical value can be associated with each outcome of an experiment
- A random variable X is a function from the sample space Ω to the real line that assigns a real number $X(s)$ to each element s of Ω

$$
X: \Omega \rightarrow R
$$

- Random variable takes on its values with some probability

Random Variable

- Example: Consider random experiment of tossing a coin twice. Sample space is:

$$
\Omega=\{(H, H),(H, T),(T, H),(T, T)\}
$$

Define random variable X as the number of heads in the experiment:

$$
\begin{aligned}
& X((T, T))=0, X((H, T))=1, \\
& X((T, H))=1, X((H, H))=2
\end{aligned}
$$

- Example: Rolling a die.

Sample space $\Omega=\{1,2,3,4,5,6)$.
Define random variable X as the number rolled:

$$
X(j)=j, \quad l \leq j \leq 6
$$

Random Variable

- Example: roll two fair dice and observe the outcome Sample space $=\{(i, j) \mid l \leq i \leq 6, l \leq j \leq 6\}$
i : integer from the first die
j : integer from the second die

$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$
$(6,1)$	$(6,2)$	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$

Possible outcomes

- Random variable X : sum of the two faces of the dice

$$
\begin{aligned}
& X(i, j)=i+j \\
&-\mathbb{P}(X=12)=\mathbb{P}((6,6))=1 / 36 \\
&-\mathbb{P}(X=10)=\mathbb{P}((5,5),(4,6),(6,4))=3 / 36
\end{aligned}
$$

- Random variable Y : value of the first die

$$
\begin{aligned}
& -\mathbb{P}(Y=1)=1 / 6 \\
& -\mathbb{P}(Y=i)=1 / 6, \quad l \leq i \leq 6
\end{aligned}
$$

Types of Random Variables

- Discrete
- Random variables whose set of possible values can be written as a finite or infinite sequence
- Example: number of requests sent to a web server
- Continuous
- Random variables that take a continuum of possible values
- Example: time between requests sent to a web server

Probability Mass Function (PMF)

X : discrete random variable $p\left(x_{i}\right)$: probability mass function of X, where

$$
p\left(x_{i}\right)=\mathbb{P}\left(X=x_{i}\right)
$$

- Properties:

$$
\begin{gathered}
0 \leq p\left(x_{i}\right) \leq 1 \\
\sum_{x_{i}} p\left(x_{i}\right)=1
\end{gathered}
$$

PMF Examples

Number of heads in tossing three coins

\boldsymbol{y}	$\boldsymbol{x}_{\boldsymbol{i}}$
0	$\boldsymbol{p}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$
1	$1 / 8$
2	$3 / 8$
3	

$$
\sum_{x_{i}} p\left(x_{i}\right)=\frac{1}{8}+\frac{3}{8}+\frac{3}{8}+\frac{1}{8}=1
$$

Number rolled in rolling a fair die
$1 / 6 \quad 1 / 6$

$$
\sum_{x_{i}} p\left(x_{i}\right)=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=1
$$

Probability Density Function (PDF)

- X : continuous random variable
- $f(x)$: probability density function of X

$$
f(x)=\frac{d}{d x} F(x)
$$

- Note:

$$
\begin{aligned}
& -\mathbb{P}(X=x)=0!! \\
& -f(x) \neq \mathbb{P}(X=x) \\
& -\mathbb{P}(x \leq X \leq x+\Delta x) \approx f(x) .
\end{aligned}
$$

- Properties:

$$
\begin{aligned}
& -\mathbb{P}(a \leq X \leq b)=\int_{a}^{b} f(x) d x \\
& -\int_{-\infty}^{+\infty} f(x) d x=1
\end{aligned}
$$

Probability Density Function

Example: Life of an inspection device is given by X, a continuous random variable with PDF:

$-X$ has an exponential distribution with mean 2 years

- Probability that the device's life is between 2 and 3 years:

$$
\mathbb{P}(2 \leq X \leq 3)=\frac{1}{2} \int_{2}^{3} e^{-\frac{x}{2}} d x=0.14
$$

Cumulative Distribution Function (CDF)

- X : discrete or continuous random variable
- $F(x)$: cumulative probability distribution function of X, or simply, probability distribution function of X

$$
F(x)=\mathbb{P}(X \leq x)
$$

- If X is discrete, then $F(x)=\sum_{x_{i} \leq x} p\left(x_{i}\right)$
- If X is continuous, then $F(x)=\int_{-\infty}^{x} f(t) d t$
- Properties
$-F(x)$ is a non-decreasing function, i.e., if $a<b$, then $F(a) \leq F(b)$
$-\lim _{x \rightarrow+\infty} F(x)=1$, and $\lim _{x \rightarrow-\infty} F(x)=0$
- All probability questions about X can be answered in terms of the CDF, e.g.:

$$
\mathbb{P}(a<X \leq b)=F(b)-F(a), \text { for all } a \leq b
$$

Cumulative Distribution Function

Discrete random variable example.

- Rolling a die, X is the number rolled

$$
\begin{aligned}
-p(i) & =\mathbb{P}(X=i)=1 / 6, \quad l \leq i \leq 6 \\
-F(i) & =\mathbb{P}(X \leq i) \\
& =p(1)+\cdots+p(i) \\
& =i / 6
\end{aligned}
$$

Cumulative Distribution Function

Continuous random variable example.

- The inspection device has CDF:

$$
F(x)=\frac{1}{2} \int_{0}^{x} e^{-t / 2} d t=1-e^{-x / 2}
$$

- The probability that the device lasts for less than 2 years:

$$
\mathbb{P}(X \leq 2)=F(2)=1-e^{-1}=0.632
$$

- The probability that it lasts between 2 and 3 years:
$\mathbb{P}(2 \leq X \leq 3)=F(3)-F(2)=\left(1-e^{-\frac{3}{2}}\right)-\left(1-e^{-1}\right)=0.145$

Joint Probability Distribution

- Joint probability distribution of random variables X and Y is defined as

$$
F(x, y)=\mathbb{P}(X \leq x, Y \leq y)
$$

- X and Y are independent random variables if

$$
F(x, y)=F_{X}(x) \cdot F_{Y}(y)
$$

- Discrete: $p(x, y)=p_{X}(x) \cdot p_{Y}(y)$
- Continuous: $f(x, y)=f_{X}(x) \cdot f_{Y}(y)$

Expectation of a Random Variable

- Mean or Expected Value:

$$
\mu=E[X]=\left\{\begin{array}{lc}
\sum_{i=1}^{n} x_{i} p\left(x_{i}\right) & \text { discrete } X \\
\int_{-\infty}^{\infty} x f(x) d x & \text { continuous } X
\end{array}\right.
$$

- Example: number of heads in tossing three coins

$$
\begin{aligned}
E[X] & =0 \cdot p(0)+1 \cdot p(1)+2 \cdot p(2)+3 \cdot p(3) \\
& =1 \cdot 3 / 8+2 \cdot 3 / 8+3 \cdot 1 / 8 \\
& =12 / 8 \\
& =1.5
\end{aligned}
$$

Expectation of a Function

- $g(X)$: a real-valued function of random variable X
- How to compute $E[g(X)]$?
- If X is discrete with PMF $p(x)$:

$$
E[g(X)]=\sum_{x} g(x) p(x)
$$

- If X is continuous with PDF $f(x)$:

$$
E[g(X)]=\int_{-\infty}^{+\infty} g(x) f(x) d x
$$

- Example: X is the number rolled when rolling a die

$$
\begin{aligned}
& -\mathrm{PMF}: p(x)=1 / 6, \text { for } x=1,2, \ldots, 6 \\
& E\left[X^{2}\right]=\sum_{x=1}^{6} x^{2} p(x)=\frac{1}{6}\left(1+2^{2}+\cdots+6^{2}\right)=\frac{91}{6}=15.17
\end{aligned}
$$

Properties of Expectation

- X, Y : two random variables
- a, b : two constants

$$
\begin{gathered}
E[a X]=a E[X] \\
E[X+b]=E[X]+b \\
E[X+Y]=E[X]+E[Y]
\end{gathered}
$$

Misuses of Expectations

- Multiplying means to get the mean of a product

$$
E[X Y] \neq E[X] E[Y]
$$

- Example: tossing three coins
$-X$: number of heads
$-Y$: number of tails

$$
\begin{gathered}
-E[X]=E[Y]=3 / 2 \Rightarrow E[X] E[Y]=9 / 4 \\
-E[X Y]=3 / 2 \\
\Rightarrow E[X Y] \neq E[X] E[Y]
\end{gathered}
$$

- Dividing means to get the mean of a ratio

$$
E\left[\frac{X}{Y}\right] \neq \frac{E[X]}{E[Y]}
$$

Variance of a Random Variable

- The variance is a measure of the spread of a distribution around its mean value
- Variance is symbolized by $V[X]$ or $\operatorname{Var}[X]$ or σ^{2} :
- Mean is a way to describe the location of a distribution
- Variance is a way to capture its scale or degree of being spread out
- The unit of variance is the square of the unit of the original variable
- σ : standard deviation
- Defined as the square root of variance $V[X]$
- Expressed in the same units as the mean

Variance of a Random Variable

- Variance: The expected value of the square of distance between a random variable and its mean $\sigma^{2}=V[X]$

where, $\mu=E[X]$
- Equivalently:

$$
\sigma^{2}=E\left[X^{2}\right]-(E[X])^{2}
$$

Variance of a Random Variable

- Example: number of heads in tossing three coins $E[X]=1.5$

$$
\begin{aligned}
\sigma^{2}= & (0-1.5)^{2} \cdot p(0)+(1-1.5)^{2} \cdot p(1) \\
& +(2-1.5)^{2} \cdot p(2)+(3-1.5)^{2} \cdot p(3) \\
= & 9 / 4 \cdot 1 / 8+1 / 4 \cdot 3 / 8+1 / 4 \cdot 3 / 8+9 / 4 \cdot 1 / 8 \\
= & 24 / 32 \\
= & 3 / 4
\end{aligned}
$$

Variance of a Random Variable

- Example: The mean of life of the previous inspection device is:

$$
E[X]=\frac{1}{2} \int_{0}^{\infty} x e^{-x / 2} d x=-\left.x e^{-x / 2}\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-x / 2} d x=2
$$

- To compute variance of X, we first compute $E\left[X^{2}\right]$:

$$
E\left[X^{2}\right]=\frac{1}{2} \int_{0}^{\infty} x^{2} e^{-x / 2} d x=-\left.x^{2} e^{-x / 2}\right|_{0} ^{\infty}+2 \int_{0}^{\infty} x e^{-x / 2} d x=8
$$

- Hence, the variance and standard deviation of the device's life are:

$$
\begin{aligned}
& V[X]=8-2^{2}=4 \\
& \sigma=\sqrt{V[X]}=2
\end{aligned}
$$

- X, Y : two random variables
- a, b : two constants

$$
\begin{gathered}
V[X] \geq 0 \\
V[a X]=a^{2} V[X] \\
V[X+b]=V[X]
\end{gathered}
$$

- If X and Y are independent:

$$
V[X+Y]=V[X]+V[Y]
$$

Coefficient of Variation

- Coefficient of Variation:

$$
\mathrm{CV}=\frac{\text { Standard Deviation }}{\text { Mean }}=\frac{\sigma}{\mu}
$$

- Example: number of heads in tossing three coins

$$
\mathrm{CV}=\frac{\sqrt{3 / 4}}{3 / 2}=\frac{1}{\sqrt{3}}
$$

- Example: inspection device

$$
\left.\begin{array}{c}
E[X]=2 \\
\sigma=2
\end{array}\right\} \Rightarrow \mathrm{CV}=1
$$

Covariance

- Covariance between random variables X and Y denoted by $\operatorname{Cov}(X, Y)$ or $\sigma_{X, Y}^{2}$ is a measure of how much X and Y change together

$$
\begin{aligned}
\sigma_{X, Y}^{2} & =E[(X-E[X])(Y-E[Y])] \\
& =E[X Y]-E[X] E[Y]
\end{aligned}
$$

- For independent variables, the covariance is zero:

$$
E[X Y]=E[X] E[Y]
$$

- Note: Although independence always implies zero covariance, the reverse is not true

Covariance

- Example: tossing three coins
$-X$: number of heads
$-Y$: number of tails
$-E[X]=E[Y]=3 / 2$
- $E[X Y]$?
$-X$ and Y depend on each other

$$
-Y=3-X
$$

$$
-E[X Y]=0 \times P(0)+2 \times P(2)
$$

$$
=3 / 2
$$

- $\sigma_{X, Y}^{2}=E[X Y]-E[X] E[Y]$

$$
\begin{aligned}
& =3 / 2-3 / 2 \times 3 / 2 \\
& =-3 / 4
\end{aligned}
$$

Correlation

- Correlation Coefficient between random variables X and Y, denoted by $\rho_{X, Y}$, is the normalized value of their covariance:

$$
\rho_{X, Y}=\frac{\sigma_{X, Y}^{2}}{\sigma_{X} \sigma_{Y}}
$$

- Indicates the strength and direction of a linear relationship between two random variables
- The correlation always lies between -1 and +1

Negative linear
correlation
No correlation
Positive linear
correlation
-1

- Example: tossing three coins

$$
\rho_{X, Y}=\frac{-3 / 4}{\sqrt{3 / 4} \sqrt{3 / 4}}=-1
$$

Outline

- Probability and random variables
- Random experiment and random variable
- Probability mass/density functions
- Expectation, variance, covariance, correlation
- Probability distributions
- Discrete probability distributions
- Continuous probability distributions
- Empirical probability distribution

Outline

- Probability and random variables
- Random experiment and random variable
- Probability mass/density functions
- Expectation, variance, covariance, correlation
- Probability distributions
- Discrete probability distributions
- Continuous probability distributions
- Empirical probability distribution

Discrete Uniform Distribution

- A random variable X has discrete uniform distributed if each of the n values in its range, say $x_{1}, x_{2}, \ldots, x_{n}$, has equal probability.
- PMF: $p\left(x_{i}\right)=\mathbb{P}\left(X=x_{i}\right)=\frac{1}{n}$

Discrete Uniform Distribution

- Consider a discrete uniform random variable X on the consecutive integers $a, a+1, a+2, \ldots, b$, for $a \leq b$. Then:

$$
\begin{gathered}
E[X]=\frac{b+a}{2} \\
V[X]=\frac{(b-a+1)^{2}-1}{12}
\end{gathered}
$$

- Consider an experiment whose outcome can be a success with probability p or a failure with probability $1-p$:
$-X=1$ if the outcome is a success
$-X=0$ if the outcome is a failure
- X is a Bernoulli random variable with parameter p
- where $0 \leq p \leq 1$ is the success probability
- PMF:

$$
\begin{aligned}
& \mathrm{p}(1)=\mathbb{P}(X=1)=p \\
& \mathrm{p}(0)=\mathbb{P}(X=0)=1-p
\end{aligned}
$$

- Properties:
$-E[X]=p$ and $V[X]=p(1-p)$

Binomial Distribution

- X : number of successes in $n(n=1,2, \ldots)$ independent Bernoulli trials with success probability p
- X is a binomial random variable with parameters (n, p)
- PMF: Probability of having $k(k=0,1,2, \ldots, n)$ successes in n trials

$$
\begin{gathered}
p(k)=\mathbb{P}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\
\text { where, }\binom{n}{k}=\frac{n!}{k!(n-k)!}
\end{gathered}
$$

- Properties:
$-E[X]=n p$ and $V[X]=n p(1-p)$

Example: Binomial Distribution

Binomial distribution PMF

$$
(n=10)
$$

Binomial distribution CDF
($n=10$)

Geometric Distribution

- X : number of Bernoulli trials until achieving the first success
- X is a geometric random variable with success probability p
- PMF: probability of $k(\mathrm{k}=1,2,3, \ldots)$ trials until the first success

$$
p(k)=p(1-p)^{k-1}
$$

- CDF: $F(k)=1-(1-p)^{k}$
- Properties:

$$
E[X]=\frac{1}{p^{\prime}} \text { and } V[X]=\frac{1-p}{p^{2}}
$$

Example: Geometric Distribution

Geometric distribution PMF

Geometric distribution CDF

Poisson Distribution

- Number of events occurring in a fixed time interval
- Events occur with a known rate and are independent
- Poisson distribution is characterized by the rate λ
- Rate: the average number of event occurrences in a fixed time interval
- Examples
- The number of calls received by a switchboard per minute
- The number of packets coming to a router per second
- The number of travelers arriving to the airport for flight registration per hour

Poisson Distribution

Random variable X is Poisson distributed with rate parameter λ

- PMF: the probability that there are exactly k events in a time interval

$$
p(k)=\mathbb{P}(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda}, k=0,1,2, \ldots
$$

- CDF: the probability of at least k events in a time interval

$$
F(k)=\mathbb{P}(X \leq k)=\sum_{i=0}^{k} \frac{\lambda^{i}}{i!} e^{-\lambda}
$$

- Properties:

$$
\begin{gathered}
E[X]=\lambda \\
V[X]=\lambda
\end{gathered}
$$

Example: Poisson Distribution

Poisson distribution PMF
Poisson distribution CDF

Example: Poisson Distribution

The number of cars that enter a parking lot follows a Poisson distribution with a rate equal to $\lambda=20$ cars/hour

- The probability of having exactly 15 cars entering the parking lot in one hour:

$$
\mathrm{p}(15)=\frac{20^{15}}{15!} e^{-20}=0.051649
$$

- The probability of having more than 3 cars entering the parking lot in one hour:

$$
\begin{aligned}
& \mathbb{P}(X>3)=1-\mathbb{P}(X \leq 3) \\
& \quad=1-[P(0)+P(1)+P(2)+P(3)] \\
& \quad=0.9999967
\end{aligned}
$$

Outline

- Probability and random variables
- Random experiment and random variable
- Probability mass/density functions
- Expectation, variance, covariance, correlation
- Probability distributions
- Discrete probability distributions
- Continuous probability distributions
- Empirical probability distribution

Uniform Distribution

- A random variable X has continuous uniform distribution on the interval $[a, b]$, if its PDF and CDF are:
-PDF: $f(x)=\frac{1}{b-a}$, for $a \leq x \leq b$
- CDF: $F(x)=\left\{\begin{array}{cc}0 & x<a \\ \frac{x-a}{b-a} & a \leq x \leq \mathrm{b} \\ 1 & x>b\end{array}\right.$
- Properties:

$$
E[X]=\frac{a+b}{2} \text {, and } V[X]=\frac{(a-b)^{2}}{12}
$$

Uniform Distribution Properties

- $\mathbb{P}\left(x_{1}<X<x_{2}\right)$ is proportional to the length of the interval $x_{2}-x_{1}$

$$
\mathbb{P}\left(x_{1}<X<x_{2}\right)=\frac{x_{2}-x_{1}}{b-a}
$$

- Special case: standard uniform distribution denoted by $\mathrm{X} \sim U(0,1)$

$$
f(x)= \begin{cases}1, & 0 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

- Very useful for random number generation in simulations
- A random variable X is exponentially distributed with parameter λ if its PDF and CDF are:
- PDF: $f(x)=\lambda e^{-\lambda x}$, for $x \geq 0$
- CDF: $F(x)=1-e^{-\lambda x}$, for $x \geq 0$
- Properties:

$$
E[X]=\frac{1}{\lambda^{\prime}} \text { and } V[X]=\frac{1}{\lambda^{2}}
$$

- The exponential distribution describes the time between consecutive events in a Poisson process of rate λ

Example: Exponential Distribution

Exponential distribution PDF

Exponential distribution CDF

- Memoryless is a property of certain probability distributions such as exponential distribution and geometric distribution
-future events do not depend on the past events, but only on the present event
- Formally: random variable X has a memoryless distribution if

$$
\mathbb{P}(X>t+s \mid X>s)=\mathbb{P}(X>t), \text { for } s, \mathrm{t} \geq 0
$$

- Example: The probability that you will wait t more minutes given that you have already been waiting s minutes is the same as the probability that you wait for more than t minutes from the beginning!

Example: Exponential Distribution

The time needed to repair the engine of a car is exponentially distributed with a mean time equal to 3 hours.

- The probability that the car spends more than the average wait time in repair:

$$
\mathbb{P}(X>3)=1-F(3)=e^{-\frac{3}{3}}=0.368
$$

- The probability that the car repair time lasts between 2 to 3 hours is:

$$
\mathbb{P}(2 \leq X \leq 3)=F(3)-F(2)=0.145
$$

- The probability that the repair time lasts for another hour given that it has already lasted for 2.5 hours:

Using the memoryless property of the exponential distribution, $\mathbb{P}(X>(1+2.5) \mid X>2.5)=\mathbb{P}(X>1)=1-F(1)=e^{-\frac{1}{3}}=0.717$

Normal Distribution

- The Normal distribution, also called the Gaussian distribution, is an important continuous probability distribution applicable in many fields
- It is specified by two parameters: mean (μ) and variance $\left(\sigma^{2}\right)$
- The importance of the normal distribution as a statistical model in natural and behavioral sciences is due in part to the Central Limit Theorem
- It is usually used to model system error (e.g. channel error), the distribution of natural phenomena, height, weight, etc.

Why Normal?

- There are two main reasons for the popularity of the normal distribution:

1. The sum of \boldsymbol{n} independent normal variables is a normal variable. $\mathbb{K}_{n} \mathbb{K}_{i} \sim N\left(\mu_{i}, \sigma_{i}\right)$ the $=\sum_{i=1}^{n} a_{i} X_{i}$ has a normal distribution with meah $=\sum_{i=1}^{n} a_{i} \mu_{i}$ and variance $\sigma^{2}=\sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}$
2. The mean of a large number of independent observations from any distribution tends to have a normal distribution. This result, which is called central limit theorem, is true for observations from all distributions
=> Experimental errors caused by many factors are normal

Central Limit Theorem

Histogram of ProportionOfHeads

Histogram plot of average proportion of heads in a fair coin toss, over a large number of sequences of coin tosses.

Normal Distribution

- Random variable X is normally distribution with parameters $\left(\mu, \sigma^{2}\right)$, i.e., $X \sim N\left(\mu, \sigma^{2}\right)$:
- PDF: $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}$, for $-\infty \leq x \leq+\infty$
- CDF: does not have any closed form!
$-E[X]=\mu$, and $V[X]=\sigma^{2}$
- Properties:

$-\lim _{x \rightarrow \pm \infty} f(x)=0$
- Normal PDF is a symmetrical, bell-shaped curve centered at its expected value μ
- Maximum value of PDF occurs at $x=\mu$

Standard Normal Distribution

- Random variable Z has Standard Normal Distribution if it is normally distributed with parameters (0,1), i.e., $Z \sim N(0,1)$:
- PDF: $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}$, for $-\infty \leq x \leq+\infty$
- CDF: commonly denoted by $\Phi(z)$:

$$
\Phi(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-\frac{1}{2} x^{2}} d x
$$

- Evaluating the distribution $X \sim N\left(\mu, \sigma^{2}\right)$:
$-F(x)=\mathbb{P}(X \leq x)$?

Two techniques:

1. Use numerical methods (no closed form)
2. Use the standard normal distribution

- $\Phi(z)$ is widely tabulated
- Use the transformation $Z=\frac{X-\mu}{\sigma}$
- If $X \sim N\left(\mu, \sigma^{2}\right)$ then $Z \sim N(0,1)$, i.e., standard normal distribution:

$$
\begin{aligned}
F(x) & =\mathbb{P}(X \leq x)=\mathbb{P}\left(\frac{X-\mu}{\sigma} \leq \frac{x-\mu}{\sigma}\right) \\
& =\mathbb{P}\left(Z \leq \frac{x-\mu}{\sigma}\right)=\Phi\left(\frac{x-\mu}{\sigma}\right)
\end{aligned}
$$

Normal Distribution

- Example: The time required to load an oceangoing vessel, X, is distributed as $N(12,4)$
- The probability that the vessel is loaded in less than 10 hours:

$$
F(10)=\Phi\left(\frac{10-12}{2}\right)=\Phi(-1)=0.1587
$$

(a)

(b)

- Using the symmetry property, $\Phi(1)$ is the complement of $\Phi(-1)$

Stochastic Process

Stochastic Process:

Collection of random variables indexed over time

- Example:
$-N(t)$: number of jobs at the CPU of a computer system over time
- Take several identical systems and observe $N(t)$
- The number $N(t)$ at any time t is a random variable
- Can find the probability distribution functions for $N(t)$ at each possible value of t
- Notation: $\{N(t): t \geq 0\}$

Poisson Process

- Counting Process:

A stochastic process that represents the total number of events occurred in the time interval $[0, t]$

- Poisson Process:

The counting process $\{N(t), t \geq 0\}$ is a Poisson process with rate λ, if:
$-N(0)=0$

- The process has independent increments
- The number of events in any interval of length t is Poisson distributed with mean λt. That is, for all $s, t \geq 0$

$$
\mathbb{P}(N(t+s)-N(s)=n)=\frac{(\lambda t)^{n}}{n!} e^{-\lambda t}
$$

Property: equal mean and variance: $E[N(t)]=V[N(t)]=\lambda t$

Interarrival Times

- Consider the interarrival times of a Poisson process with rate λ, denoted by A_{1}, A_{2}, \ldots, where A_{i} is the elapsed time between arrival i and arrival $i+1$

- Interarrival times, A_{1}, A_{2}, \ldots are independent identically distributed exponential random variables having the mean $1 / \lambda$

```
Arrival counts Interarrival times
    ~ Poisson( }\lambda\mathrm{ )
```

~ Exponential (λ)

- Proof?

Splitting and Pooling

- Pooling:
- $N_{1}(t)$: Poisson process with rate λ_{1}
$-N_{2}(t)$: Poisson process with rate λ_{2}
$-N(t)=N_{1}(t)+N_{2}(t)$: Poisson process with rate $\lambda_{1}+\lambda_{2}$

- Splitting:
$-N(t)$: Poisson process with rate λ
- Each event is classified as Type I, with probability p and Type II, with probability $1-p$
- $N_{1}(t)$: The number of type I events is a Poisson process with rate $p \lambda$
$-N_{2}(t)$: The number of type II events is a Poisson process with rate $(1-p) \lambda$
- Note: $N(t)=N_{1}(\mathrm{t})+N_{2}(t)$

More on Poisson Distribution

- $\{N(t), t \geq 0\}:$ a Poisson process with arrival rate λ
- Probability of no arrivals in a small time interval h :

$$
\mathbb{P}(N(h)=0)=e^{-\lambda h} \approx 1-\lambda h
$$

- Probability of one arrivals in a small time interval h :

$$
\mathbb{P}(N(h)=1)=\lambda h \cdot e^{-\lambda h} \approx \lambda h
$$

- Probability of two or more arrivals in a small time interval h :

$$
\mathbb{P}(N(h) \geq 2)=1-(\mathbb{P}(N(h)=0)+\mathbb{P}(N(t)=1))_{70}
$$

Outline

- Probability and random variables
- Random experiment and random variable
- Probability mass/density functions
- Expectation, variance, covariance, correlation
- Probability distributions
- Discrete probability distributions
- Continuous probability distributions
- Empirical probability distribution

Empirical Distribution

- A distribution whose parameters are the observed values in a sample of data:
- Could be used if no theoretical distributions fit the data adequately
- Advantage: no assumption beyond the observed values in the sample
- Disadvantage: sample might not cover the entire range of possible values

Empirical Distribution

" "Piecewise Linear" empirical distribution

- Used for continuous data
- Appropriate when a large sample data is available
- Empirical CDF is approximated by a piecewise linear function:
- the 'jump points' connected by linear functions

Piecewise Linear
Empirical CDF

Empirical Distribution

- Piecewise Linear empirical distribution
- Organize X-axis into K intervals
- Interval i is from a_{i-1} to a_{i} for $i=1,2, \ldots, K$
$-p_{i}$: relative frequency of interval i
$-c_{i}$: relative cumulative frequency of interval i, i.e., $c_{i}=p_{1}+\cdots+p_{i}$

K intervals
- Empirical CDF:
- If x is in interval i, i.e., $a_{i-1}<x \leq a_{i}$, then:

$$
F(x)=c_{i-1}+\alpha_{i}\left(x-a_{i-1}\right)
$$

where, slope α_{i} is given by

$$
\alpha_{i}=\frac{c_{i}-c_{i-1}}{a_{i}-a_{i-1}}
$$

Example Empirical Distribution

- Suppose the data collected for 100 broken machine repair times are:

\boldsymbol{i}	Interval (Hours)	Frequency	Relative Frequency	Cumulative Frequency	Slope
1	$0.0<x \leq 0.5$	31	0.31	0.31	0.62
2	$0.5<x \leq 1.0$	10	0.10	0.41	0.2
3	$1.0<x \leq 1.5$	25	0.25	0.66	0.5
4	$1.5<x \leq 2.0$	34	0.34	1.00	0.68

