
CPSC 531:
System Modeling and Simulation

Carey Williamson

Department of Computer Science

University of Calgary

Fall 2017



▪ The world a model-builder sees is probabilistic rather 
than deterministic:

— Some probability model might well describe the variations

Goals:

▪ Review the fundamental concepts of probability

▪ Understand the difference between discrete and 
continuous random variable

▪ Review the most common probability models

Overview
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▪ Probability and random variables

— Random experiment and random variable

— Probability mass/density functions

— Expectation, variance, covariance, correlation

▪ Probability distributions

— Discrete probability distributions

— Continuous probability distributions

— Empirical probability distributions

Outline
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▪ Probability and random variables

— Random experiment and random variable

— Probability mass/density functions

— Expectation, variance, covariance, correlation

▪ Probability distributions

— Discrete probability distributions

— Continuous probability distributions

— Empirical probability distribution

Outline
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Is widely used in mathematics, science, engineering, 
finance and philosophy to draw conclusions about the 

likelihood of potential events and the underlying 
mechanics of complex systems

▪ Probability is a measure of how likely it is for an event to 
happen

▪ We measure probability with a number between 0 and 1

▪ If an event is certain to happen, then the probability of 
the event is 1

▪ If an event is certain not to happen, then the probability 
of the event is 0

Probability
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▪ An experiment is called random if the outcome of 
the experiment is uncertain

▪ For a random experiment:

— The set of all possible outcomes is known before the 
experiment

— The outcome of the experiment is not known in advance

▪ Sample space Ω of an experiment is the set of all 
possible outcomes of the experiment

▪ Example: Consider random experiment of tossing a
coin twice. Sample space is:

Ω = { 𝐻,𝐻 , 𝐻, 𝑇 , 𝑇, 𝐻 , (𝑇, 𝑇)}

Random Experiment
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▪ An event is a subset of sample space

Example 1: in tossing a coin twice, E={(H,H)} is the event of 
having two heads

Example 2: in tossing a coin twice, E={(H,H), (H,T)} is the 
event of having a head in the first toss

▪ Probability of an event  E is a numerical measure of the 
likelihood that event 𝐸 will occur, expressed as a number 
between 0 and 1, 

0 ≤ ℙ 𝐸 ≤ 1

— If all possible outcomes are equally likely: ℙ 𝐸 = 𝐸 /|Ω|

— Probability of the sample space is 1: ℙ Ω = 1

Probability of Events
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▪ Probability that two events 𝐴 and 𝐵 occur in a single 
experiment:

ℙ 𝐴 and 𝐵 = ℙ 𝐴 ∩ 𝐵

▪ Example: drawing a single card at random from a 
regular deck of cards, probability of getting a red king

—𝐴: getting a red card

—𝐵: getting a king

—ℙ 𝐴 ∩ 𝐵 =
2

52

Joint Probability
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▪ Two events 𝐴 and 𝐵 are independent if the 
occurrence of one does not affect the occurrence of 
the other:

ℙ 𝐴 ∩ 𝐵 = ℙ 𝐴 ℙ(𝐵)

▪ Example: drawing a single card at random from a 
regular deck of cards, probability of getting a red king

—𝐴: getting a red card ⇒ℙ 𝐴 = 26/52

—𝐵: getting a king ⇒ℙ 𝐵 = 4/52

—ℙ 𝐴 ∩ 𝐵 =
2

52
= ℙ 𝐴 ℙ 𝐵 ⇒ 𝐴 and 𝐵 are independent

Independent Events

9



▪ Events 𝐴 and 𝐵 are mutually exclusive if the occurrence of 
one implies the non-occurrence of the other, i.e., 𝐴 ∩ 𝐵 = 𝜙:

ℙ 𝐴 ∩ 𝐵 = 0

▪ Example: drawing a single card at random from a regular deck 
of cards, probability of getting a red club

— 𝐴: getting a red card

— 𝐵: getting a club

— ℙ 𝐴 ∩ 𝐵 = 0

▪ Complementary event of event 𝐴 is event [𝑛𝑜𝑡 𝐴], i.e., the 
event that 𝐴 does not occur, denoted by ҧ𝐴

— Events 𝐴 and ҧ𝐴 are mutually exclusive

— ℙ ҧ𝐴 = 1 − ℙ(𝐴)

Mutually Exclusive Events
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▪ Union of events 𝐴 and 𝐵:
ℙ 𝐴 or 𝐵 = ℙ 𝐴 ∪ 𝐵 = ℙ 𝐴 + ℙ 𝐵 − ℙ 𝐴 ∩ 𝐵

▪ If 𝐴 and 𝐵 are mutually exclusive:
ℙ 𝐴 ∪ 𝐵 = ℙ 𝐴 + ℙ(𝐵)

▪ Example: drawing a single card at random from a regular deck 
of cards, probability of getting a red card or a king

— 𝐴: getting a red card ⇒ℙ 𝐴 = 26/52

— 𝐵: getting a king ⇒ℙ 𝐵 = 4/52

— ℙ 𝐴 ∩ 𝐵 =
2

52

— ℙ 𝐴 ∪ 𝐵 = ℙ 𝐴 + ℙ 𝐵 − ℙ 𝐴 ∩ 𝐵 =
26

52
+

4

52
−

2

52
=

28

52

Union Probability
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▪ Probability of event 𝐴 given the occurrence of some event 𝐵:

ℙ 𝐴 𝐵 =
ℙ 𝐴 ∩ 𝐵

ℙ(𝐵)

▪ If events 𝐴 and 𝐵 are independent:

ℙ 𝐴 𝐵 =
ℙ(𝐴)ℙ(𝐵)

ℙ(𝐵)
= 𝑃 𝐴

▪ Example: drawing a single card at random from a regular deck 
of cards, probability of getting a king given that the card is red

— 𝐴: getting a red card ⇒ℙ 𝐴 = 26/52

— 𝐵: getting a king ⇒ℙ 𝐵 = 4/52

— ℙ 𝐴 ∩ 𝐵 =
2

52

— ℙ 𝐵|𝐴 =
ℙ(𝐵∩𝐴)

ℙ(𝐴)
=

2

26
= ℙ 𝐵

Conditional Probability

12



▪ A numerical value can be associated with each 
outcome of an experiment

▪ A random variable X is a function from the sample 
space  to the real line that assigns a real number 
X(s) to each element s of 

X:  → R

▪ Random variable takes on its values with some 
probability

Random Variable
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▪ Example: Consider random experiment of tossing a 
coin twice. Sample space is:

 = {(H,H), (H,T), (T,H), (T,T)}

Define random variable X as the number of heads in
the experiment:

X((T,T)) = 0,  X((H,T))=1, 

X((T,H)) = 1, X((H,H))=2

▪ Example: Rolling a die. 
Sample space  = {1,2,3,4,5,6). 

Define random variable X as the number rolled:

X(j) = j,         1 ≤ j ≤ 6

Random Variable
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▪ Example: roll two fair dice and observe the outcome

Sample space = {(i,j) | 1 ≤ i ≤ 6, 1 ≤ j ≤ 6}

i: integer from the first die

j: integer from the second die

Random Variable

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Possible outcomes
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▪ Random variable 𝑋: sum of the two faces of the dice

X(i,j) = i+j

—ℙ(X = 12) = ℙ( (6,6) ) = 1/36

—ℙ(X = 10) = ℙ( (5,5), (4,6), (6,4) ) = 3/36

▪ Random variable Y: value of the first die

—ℙ(Y = 1) = 1/6

—ℙ( Y = i) = 1/6,      1 ≤ i ≤ 6

Random Variable
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▪ Discrete

— Random variables whose set of possible values can be 
written as a finite or infinite sequence

— Example: number of requests sent to a web server

▪ Continuous

— Random variables that take a continuum of possible values

— Example: time between requests sent to a web server

Types of Random Variables
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▪ X: discrete random variable

▪ 𝑝(𝑥𝑖): probability mass function of 𝑋, where

𝑝 𝑥𝑖 = ℙ(𝑋 = 𝑥𝑖)

▪ Properties:
0 ≤ 𝑝 𝑥𝑖 ≤ 1



𝑥𝑖

𝑝(𝑥𝑖) = 1

Probability Mass Function (PMF)
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▪ Number of heads in tossing 
three coins



𝑥𝑖

𝑝 𝑥𝑖 =
1

8
+
3

8
+
3

8
+
1

8
= 1

PMF Examples

𝒙𝒊 𝒑(𝒙𝒊)

0 1/8

1 3/8

2 3/8

3 1/8

 Number rolled in rolling 

a fair die



𝑥𝑖

𝑝 𝑥𝑖 =
1

6
+
1

6
+
1

6
+
1

6
+
1

6
+
1

6
= 1
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▪ X: continuous random variable

▪ f(x): probability density function of X

▪ Note:

—ℙ 𝑋 = 𝑥 = 0 !!

—𝑓 𝑥 ≠ ℙ 𝑋 = 𝑥

—ℙ 𝑥 ≤ 𝑋 ≤ 𝑥 + Δ𝑥 ≈ 𝑓 𝑥 Δx

▪ Properties:

—ℙ 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑎
𝑏
𝑓 𝑥 𝑑𝑥

∞−—
+∞

𝑓 𝑥 𝑑𝑥 = 1

Probability Density Function (PDF)

)()( xF
dx

d
xf 

CDF of 𝑋

20



Example: Life of an inspection device is given by 𝑋, a 
continuous random variable with PDF:

𝑓 𝑥 =
1

2
𝑒−

𝑥

2,   for 𝑥 ≥ 0

—𝑋 has an exponential distribution with mean 2 years

— Probability that the device’s life is between 2 and 3 years:

ℙ 2 ≤ 𝑋 ≤ 3 =
1

2
න
2

3

𝑒−
𝑥
2𝑑𝑥 = 0.14

Probability Density Function

21



▪ X: discrete or continuous random variable

▪ 𝐹(𝑥): cumulative probability distribution function of X, or 
simply, probability distribution function of X

𝐹 𝑥 = ℙ 𝑋 ≤ 𝑥

— If 𝑋 is discrete, then 𝐹 𝑥 = σ𝑥𝑖≤𝑥 𝑝 𝑥𝑖

— If 𝑋 is continuous, then 𝐹 𝑥 = ∞−
𝑥
𝑓 𝑡 𝑑𝑡

▪ Properties
— 𝐹(𝑥) is a non-decreasing function, i.e., if 𝑎 < 𝑏, then 𝐹 𝑎 ≤ 𝐹(𝑏)

— lim
𝑥→+∞

𝐹 𝑥 = 1, and lim
𝑥→−∞

𝐹 𝑥 = 0

▪ All probability questions about 𝑋 can be answered in terms of the CDF, 
e.g.:

ℙ 𝑎 < 𝑋 ≤ 𝑏 = 𝐹 𝑏 − 𝐹 𝑎 , for all 𝑎 ≤ 𝑏

Cumulative Distribution Function (CDF)
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Discrete random variable example.

▪ Rolling a die, X is the number rolled

—p(i) = ℙ(X = i) = 1/6,                1 ≤ i ≤ 6

—F(i) = ℙ (X ≤ i) 

= p(1) + … + p(i) 

= i/6

Cumulative Distribution Function
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Continuous random variable example.

▪ The inspection device has CDF:

— The probability that the device lasts for less than 2 years:
ℙ 𝑋 ≤ 2 = 𝐹 2 = 1 − 𝑒−1 = 0.632

— The probability that it lasts between 2 and 3 years:

ℙ 2 ≤ 𝑋 ≤ 3 = 𝐹 3 − 𝐹 2 = (1 − 𝑒−
3
2) − 1 − 𝑒−1 = 0.145

Cumulative Distribution Function

2/

0

2/ 1
2

1
)( x

x
t edtexF   
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▪ Joint probability distribution of random variables 𝑋
and 𝑌 is defined as

𝐹 𝑥, 𝑦 = ℙ 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦

▪ 𝑋 and 𝑌 are independent random variables if
𝐹 𝑥, 𝑦 = 𝐹𝑋 𝑥 ⋅ 𝐹𝑌 𝑦

— Discrete: 𝑝 𝑥, 𝑦 = 𝑝𝑋 𝑥 ⋅ 𝑝𝑌(𝑦)

— Continuous: 𝑓 𝑥, 𝑦 = 𝑓𝑋 𝑥 ⋅ 𝑓𝑌(𝑦)

Joint Probability Distribution
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▪ Mean or Expected Value:

▪ Example: number of heads in tossing three coins

E[X] = 0 ⋅ p(0) + 1 ⋅ p(1) + 2 ⋅ p(2) + 3 ⋅ p(3)

= 1 ⋅ 3/8 + 2 ⋅ 3/8 + 3 ⋅ 1/8

= 12/8 

= 1.5

Expectation of a Random Variable
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▪ 𝑔(𝑋): a real-valued function of random variable 𝑋

▪ How to compute 𝐸[𝑔(𝑋)]?

— If 𝑋 is discrete with PMF 𝑝(𝑥): 

𝐸 𝑔 𝑋 =

𝑥

𝑔 𝑥 𝑝(𝑥)

— If 𝑋 is continuous with PDF 𝑓 𝑥 :

𝐸 𝑔 𝑋 = න
−∞

+∞

𝑔 𝑥 𝑓 𝑥 𝑑𝑥

▪ Example: 𝑋 is the number rolled when rolling a die

— PMF: 𝑝 𝑥 = 1/6, for 𝑥 = 1,2,… , 6

𝐸 𝑋2 = 

𝑥=1

6

𝑥2𝑝 𝑥 =
1

6
1 + 22 +⋯+ 62 =

91

6
= 15.17

Expectation of a Function
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▪ 𝑋, 𝑌: two random variables

▪ 𝑎, 𝑏: two constants

𝐸 𝑎𝑋 = 𝑎𝐸[𝑋]

𝐸 𝑋 + 𝑏 = 𝐸 𝑋 + 𝑏

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌

Properties of Expectation
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▪ Multiplying means to get the mean of a product

▪ Example: tossing three coins

— X: number of heads

— Y: number of tails

— E[X] = E[Y] = 3/2  E[X]E[Y] = 9/4

— E[XY] = 3/2 

 E[XY] ≠ E[X]E[Y]

▪ Dividing means to get  the mean of a ratio 

Misuses of Expectations

][

][
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XE

Y

X
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▪ The variance is a measure of the spread of a 
distribution around its mean value 

▪ Variance is symbolized by 𝑉[𝑋] or 𝑉𝑎𝑟[𝑋] or 𝜎2:

— Mean is a way to describe the location of a distribution

— Variance is a way to capture its scale or degree of being 
spread out

— The unit of variance is the square of the unit of the original 
variable

 𝜎: standard deviation

 Defined as the square root of variance 𝑉[𝑋]

 Expressed in the same units as the mean

Variance of a Random Variable
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▪ Variance: The expected value of the square of 
distance between a random variable and its mean

where, μ= E[X]

▪ Equivalently:

σ2 = E[X2] – (E[X])2

Variance of a Random Variable
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▪ Example: number of heads in tossing three coins

E[X] = 1.5

σ2 = (0 – 1.5)2⋅p(0) + (1 – 1.5)2⋅p(1) 

+ (2 – 1.5)2⋅p(2) + (3 – 1.5)2⋅p(3)

= 9/4 ⋅ 1/8 + 1/4 ⋅ 3/8 + 1/4 ⋅ 3/8 + 9/4 ⋅ 1/8

= 24/32

= 3/4

Variance of a Random Variable
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▪ Example: The mean of life of the previous inspection 
device is:

▪ To compute variance of 𝑋, we first compute 𝐸[𝑋2]:

▪ Hence, the variance and standard deviation of the 
device’s life are:

Variance of a Random Variable
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▪ 𝑋, 𝑌: two random variables

▪ 𝑎, 𝑏: two constants
𝑉 𝑋 ≥ 0

𝑉 𝑎𝑋 = 𝑎2𝑉 𝑋

𝑉 𝑋 + 𝑏 = 𝑉 𝑋

▪ If 𝑋 and 𝑌 are independent:

𝑉 𝑋 + 𝑌 = 𝑉 𝑋 + 𝑉 𝑌

Properties of Variance
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▪ Coefficient of Variation:

CV =
Standard Deviation

Mean
=
𝜎

𝜇

▪ Example: number of heads in tossing three coins

▪ Example: inspection device

Coefficient of Variation

3

1

2/3

4/3
CV 

1CV
2

2][
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▪ Covariance between random variables 𝑋 and 𝑌 denoted by 

𝐶𝑜𝑣(𝑋, 𝑌) or 𝜎𝑋,𝑌
2 is a measure of how much 𝑋 and 𝑌 change 

together

𝜎𝑋,𝑌
2 = 𝐸 𝑋 − 𝐸 𝑋 𝑌 − 𝐸 𝑌

= 𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸[𝑌]

▪ For independent variables, the covariance is zero:

𝐸 𝑋𝑌 = 𝐸 𝑋 𝐸[𝑌]

▪ Note: Although independence always implies zero covariance, 
the reverse is not true

Covariance
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▪ Example: tossing three coins

— X: number of heads

— Y: number of tails

— E[X] = E[Y] = 3/2

▪ E[XY]?

— X and Y depend on each other

— Y = 3 – X

— E[XY] = 0×P(0) + 2×P(2)

= 3/2

▪ 𝜎𝑋,𝑌
2 = E[XY] – E[X]E[Y]

= 3/2 – 3/2 × 3/2

= – 3/4

Covariance

x y xy p(x)

0 3 0 1/8

1 2 2 3/8

2 1 2 3/8

3 0 0 1/8

xy p(xy)

0 2/8

2 6/8
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▪ Correlation Coefficient between random variables 𝑋 and 𝑌, 
denoted by 𝜌𝑋,𝑌, is the normalized value of their covariance:

𝜌𝑋,𝑌 =
𝜎𝑋,𝑌
2

𝜎𝑋𝜎𝑌
▪ Indicates the strength and direction of a linear relationship 

between two random variables

▪ The correlation always lies between -1 and +1 

▪ Example: tossing three coins

𝜌𝑋,𝑌 =
−3/4

3/4 3/4
= −1

Correlation

-1 0 +1

No correlation

Positive linear 

correlation

Negative linear 

correlation
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▪ Probability and random variables

— Random experiment and random variable

— Probability mass/density functions

— Expectation, variance, covariance, correlation

▪ Probability distributions

— Discrete probability distributions

— Continuous probability distributions

— Empirical probability distribution

Outline
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▪ Probability and random variables

— Random experiment and random variable

— Probability mass/density functions

— Expectation, variance, covariance, correlation

▪ Probability distributions

— Discrete probability distributions

— Continuous probability distributions

— Empirical probability distribution

Outline
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▪ A random variable 𝑋 has discrete uniform distributed 
if each of the 𝑛 values in its range, say 𝑥1, 𝑥2, … , 𝑥𝑛, 
has equal probability. 

▪ PMF: 𝑝 𝑥𝑖 = ℙ 𝑋 = 𝑥𝑖 =
1

𝑛

Discrete Uniform Distribution

1 2 3 4

1

4

𝑝
(𝑥

𝑖)
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▪ Consider a discrete uniform random variable 𝑋 on 
the consecutive integers 𝑎, 𝑎 + 1, 𝑎 + 2,… , 𝑏, 
for 𝑎 ≤ 𝑏. Then:

𝐸 𝑋 =
𝑏 + 𝑎

2

𝑉 𝑋 =
𝑏 − 𝑎 + 1 2 − 1

12

Discrete Uniform Distribution
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▪ Consider an experiment whose outcome can be a success
with probability 𝑝 or a failure with probability 1 − 𝑝:

— 𝑋 = 1 if the outcome is a success

— 𝑋 = 0 if the outcome is a failure

▪ 𝑋 is a Bernoulli random variable with parameter 𝑝
— where 0 ≤ 𝑝 ≤ 1 is the success probability

▪ PMF:
p 1 = ℙ(𝑋 = 1) = 𝑝
p 0 = ℙ(𝑋 = 0) = 1 − 𝑝

▪ Properties:
— 𝐸 𝑋 = 𝑝 and  𝑉 𝑋 = 𝑝(1 − 𝑝)

Bernoulli Trial
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▪ 𝑋: number of successes in 𝑛 (𝑛 = 1,2,… ) independent 
Bernoulli trials with success probability 𝑝

▪ 𝑋 is a binomial random variable with parameters 𝑛, 𝑝

▪ PMF: Probability of having 𝑘 (𝑘 = 0,1,2, … , 𝑛) successes in 𝑛 trials

𝑝 𝑘 = ℙ(𝑋 = 𝑘) =
𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘

where, 
𝑛
𝑘

=
𝑛!

𝑘! 𝑛−𝑘 !

▪ Properties:
— 𝐸 𝑋 = 𝑛𝑝 and 𝑉 𝑋 = 𝑛𝑝(1 − 𝑝)

Binomial Distribution 
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Example: Binomial Distribution

Binomial distribution PMF
(𝑛 = 10)

Binomial distribution CDF
(𝑛 = 10)



▪ 𝑋: number of Bernoulli trials until achieving the first success

▪ 𝑋 is a geometric random variable with success probability 𝑝

▪ PMF: probability of 𝑘 (k = 1,2,3,… ) trials until the first 
success

𝑝 𝑘 = 𝑝 1 − 𝑝 𝑘−1

▪ CDF: 𝐹 𝑘 = 1 − 1 − 𝑝 𝑘

▪ Properties:

𝐸 𝑋 =
1

𝑝
, and 𝑉 𝑋 =

1−𝑝

𝑝2

Geometric Distribution
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Example: Geometric Distribution

Geometric distribution PMF Geometric distribution CDF



▪ Number of events occurring in a fixed time interval
— Events occur with a known rate and are independent

▪ Poisson distribution is characterized by the rate 
— Rate: the average number of event occurrences in a fixed time interval

▪ Examples
— The number of calls received by a switchboard per minute

— The number of packets coming to a router per second

— The number of travelers arriving to the airport for flight registration 
per hour

Poisson Distribution
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Random variable 𝑋 is Poisson distributed with rate parameter 𝜆

▪ PMF: the probability that there are exactly 𝑘 events in a time interval

𝑝 𝑘 = ℙ 𝑋 = 𝑘 =
𝜆𝑘

𝑘!
𝑒−𝜆,  𝑘 = 0,1,2, …

▪ CDF: the probability of at least 𝑘 events in a time interval

𝐹 𝑘 = ℙ 𝑋 ≤ 𝑘 =

𝑖=0

𝑘
𝜆𝑖

𝑖!
𝑒−𝜆

▪ Properties:

𝐸 𝑋 = 𝜆
𝑉 𝑋 = λ

Poisson Distribution
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Example: Poisson Distribution

Poisson distribution PMF Poisson distribution CDF



The number of cars that enter a parking lot follows a 
Poisson distribution with a rate equal to 𝜆 = 20
cars/hour

— The probability of having exactly 15 cars entering the 
parking lot in one hour:

p 15 =
2015

15!
𝑒−20 = 0.051649

— The probability of having more than 3 cars entering the 
parking lot in one hour:

ℙ 𝑋 > 3 = 1 − ℙ 𝑋 ≤ 3

= 1 − 𝑃 0 + 𝑃 1 + 𝑃 2 + 𝑃 3
= 0.9999967

Example: Poisson Distribution
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▪ Probability and random variables

— Random experiment and random variable

— Probability mass/density functions

— Expectation, variance, covariance, correlation

▪ Probability distributions

— Discrete probability distributions

— Continuous probability distributions

— Empirical probability distribution

Outline
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▪ A random variable X has continuous uniform 
distribution on the interval [a,b], if its PDF and CDF 
are:

— PDF: 𝑓 𝑥 =
1

𝑏−𝑎
, for 𝑎 ≤ 𝑥 ≤ 𝑏

— CDF: 𝐹 𝑥 = ൞

0 𝑥 < 𝑎
𝑥−𝑎

𝑏−𝑎
𝑎 ≤ 𝑥 ≤ b

1 𝑥 > 𝑏

▪ Properties:

𝐸 𝑋 =
𝑎+𝑏

2
, and 𝑉 𝑋 =

𝑎−𝑏 2

12

Uniform Distribution

CDF

PDF
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▪ ℙ(𝑥1 < 𝑋 < 𝑥2) is proportional to the length of the 
interval 𝑥2 − 𝑥1

ℙ 𝑥1 < 𝑋 < 𝑥2 =
𝑥2 − 𝑥1
𝑏 − 𝑎

▪ Special case:  standard uniform distribution denoted 
by X~𝑈(0,1)

— Very useful for random number generation in simulations

Uniform Distribution Properties

𝑓 𝑥 = ቊ
1, 0 ≤ 𝑥 ≤ 1
0, otherwise
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▪ A random variable 𝑋 is exponentially distributed with 
parameter 𝜆 if its PDF and CDF are:

— PDF: 𝑓 𝑥 = 𝜆 𝑒−𝜆𝑥, for 𝑥 ≥ 0

— CDF: 𝐹 𝑥 = 1 − 𝑒−𝜆𝑥, for 𝑥 ≥ 0

▪ Properties:

𝐸 𝑋 =
1

𝜆
, and 𝑉 𝑋 =

1

𝜆2

▪ The exponential distribution describes the time 
between consecutive events in a Poisson process of 
rate 𝜆

Exponential Distribution
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Example: Exponential Distribution

Exponential distribution PDF Exponential distribution CDF



▪ Memoryless is a property of certain probability distributions 
such as exponential distribution and geometric distribution

—future events do not depend on the past events, 
but only on the present event

▪ Formally: random variable 𝑋 has a memoryless distribution if

ℙ 𝑋 > 𝑡 + 𝑠 𝑋 > 𝑠) = ℙ 𝑋 > 𝑡 , for 𝑠, t ≥ 0

▪ Example: The probability that you will wait 𝑡 more minutes 
given that you have already been waiting 𝑠 minutes is the 
same as the probability that you wait for more than 𝑡 minutes 
from the beginning!

Memoryless Property
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Example: Exponential Distribution

▪ The time needed to repair the engine of a car is exponentially 
distributed with a mean time equal to 3 hours.

— The probability that the car spends more than the average wait time in 
repair:

ℙ 𝑋 > 3 = 1 − 𝐹 3 = 𝑒−
3

3 = 0.368

— The probability that the car repair time lasts between 2 to 3 hours is:
ℙ 2 ≤ 𝑋 ≤ 3 = 𝐹 3 − 𝐹 2 = 0.145

— The probability that the repair time lasts for another hour given that it has 
already lasted for 2.5 hours:

Using the memoryless property of the exponential distribution,

ℙ 𝑋 > 1 + 2.5 |𝑋 > 2.5 = ℙ 𝑋 > 1 = 1 − 𝐹 1 = 𝑒−
1
3 = 0.717
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▪ The Normal distribution, also called the Gaussian 
distribution, is an important continuous probability 
distribution applicable in many fields 

▪ It is specified by two parameters: mean (μ) and variance (𝜎2)

▪ The importance of the normal distribution as a statistical 
model in natural and behavioral sciences is due in part to the 
Central Limit Theorem

▪ It is usually used to model system error (e.g. channel error), 
the distribution of natural phenomena, height, weight, etc.

Normal Distribution

59



▪ There are two main reasons for the popularity of the normal 
distribution:

1. The sum of  n independent normal variables is a normal 
variable. If,  
then                      has a normal distribution with 
mean                    and variance  

2. The mean of a large number of independent observations 
from any distribution tends to have a normal distribution.
This result, which is called central limit theorem, is true for 
observations from all distributions
=> Experimental errors caused by many factors are normal

Why Normal?
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Central Limit Theorem

Histogram plot of average proportion of heads in a fair coin

toss, over a large number of sequences of coin tosses.
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▪ Random variable X is normally distribution with 
parameters 𝜇, 𝜎2 , i.e., 𝑋~𝑁(𝜇, 𝜎2):

— PDF: 𝑓 𝑥 =
1

𝜎 2𝜋
𝑒
−
1

2

𝑥−𝜇

𝜎

2

,   for −∞ ≤ 𝑥 ≤ +∞

— CDF: does not have any closed form!

— 𝐸 𝑋 = 𝜇, and 𝑉 𝑋 = 𝜎2

▪ Properties: 

— lim
𝑥→±∞

𝑓 𝑥 = 0

— Normal PDF is a symmetrical, bell-shaped curve 
centered at its expected value 𝜇

— Maximum value of PDF occurs at 𝑥 = 𝜇

Normal Distribution
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▪ Random variable 𝑍 has Standard Normal Distribution if it is
normally distributed with parameters (0, 1), i.e., 𝑍~𝑁 0, 1 :

— PDF: 𝑓 𝑥 =
1

2𝜋
𝑒−

1

2
𝑥2,   for −∞ ≤ 𝑥 ≤ +∞

— CDF: commonly denoted by Φ(𝑧):

Φ 𝑧 =
1

2𝜋
න
−∞

𝑧

𝑒−
1
2𝑥

2
𝑑𝑥

Standard Normal Distribution
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▪ Evaluating the distribution 𝑋~𝑁 𝜇, 𝜎2 :
— 𝐹 𝑥 = ℙ 𝑋 ≤ 𝑥 ?

Two techniques:

1. Use numerical methods (no closed form)

2. Use the standard normal distribution 
— Φ(𝑧) is widely tabulated 

— Use the transformation 𝑍 =
𝑋−𝜇

𝜎

— If 𝑋~𝑁(𝜇, 𝜎2) then 𝑍~𝑁(0, 1), i.e., standard normal 
distribution:

𝐹 𝑥 = ℙ 𝑋 ≤ 𝑥 = ℙ
𝑋 − 𝜇

𝜎
≤
𝑥 − 𝜇

𝜎

= ℙ 𝑍 ≤
𝑥 − 𝜇

𝜎
= Φ

𝑥 − 𝜇

𝜎

Normal Distribution
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▪ Example: The time required to load an oceangoing vessel, 𝑋, 
is distributed as 𝑁(12, 4)

— The probability that the vessel is loaded in less than 10 hours:

𝐹 10 = Φ
10 − 12

2
= Φ −1 = 0.1587

— Using the symmetry property, F(1) is the complement of F (-1)

Normal Distribution
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Stochastic Process:
Collection of random variables indexed over time

▪ Example:

— N(t): number of jobs at the CPU of a computer system over 
time

— Take several identical systems and observe N(t)

— The number N(t) at any time 𝑡 is a random variable

— Can find the probability distribution functions for N(t) at 
each possible value of t

▪ Notation: {𝑁 𝑡 : 𝑡 ≥ 0}

Stochastic Process
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▪ Counting Process: 
A stochastic process that represents the total number of 
events occurred in the time interval [0, 𝑡]

▪ Poisson Process: 
The counting process {𝑁 𝑡 , 𝑡 ≥ 0} is a Poisson process with 
rate 𝜆, if:

— 𝑁 0 = 0

— The process has independent increments

— The number of events in any interval of length 𝑡 is Poisson distributed 
with mean 𝜆𝑡. That is, for all 𝑠, 𝑡 ≥ 0

ℙ 𝑁 𝑡 + 𝑠 − 𝑁 𝑠 = 𝑛 =
𝜆𝑡 𝑛

𝑛!
𝑒−𝜆𝑡

Property: equal mean and variance: 𝐸 𝑁 𝑡 = 𝑉 𝑁 𝑡 = 𝜆𝑡

Poisson Process
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▪ Consider the interarrival times of a Poisson process with 
rate 𝜆, denoted by 𝐴1, 𝐴2, …, where 𝐴𝑖 is the elapsed time between 
arrival 𝑖 and arrival 𝑖 + 1

 Interarrival times, 𝐴1, 𝐴2, … are independent identically distributed 
exponential random variables having the mean 1/𝜆

▪ Proof?

Interarrival Times

Arrival counts   
~ Poisson(𝜆)

Interarrival times   
~ Exponential(𝜆)
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▪ Pooling:

— 𝑁1(𝑡): Poisson process with rate 𝜆1
— 𝑁2(𝑡): Poisson process with rate 𝜆2
— 𝑁 𝑡 = 𝑁1 𝑡 + 𝑁2(𝑡): Poisson process with rate 𝜆1 + 𝜆2

▪ Splitting:

— 𝑁(𝑡): Poisson process with rate 𝜆

— Each event is classified as Type I, with probability 𝑝 and Type II, with 
probability 1 − 𝑝

— 𝑁1(𝑡): The number of type I events is a Poisson process with rate 𝑝𝜆

— 𝑁2(𝑡): The number of type II events is a Poisson process with rate (1 − 𝑝)𝜆

— Note: 𝑁 𝑡 = 𝑁1(t) + 𝑁2(𝑡)

Splitting and Pooling

N(t) ~ Poisson()

N1(t) ~ Poisson(p)

N2(t) ~ Poisson((1-p))



p

(1-p)

N(t) ~ Poisson(1  2)

N1(t) ~ Poisson(1)

N2(t) ~ Poisson(2)

1  2

1

2
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▪ {𝑁 𝑡 , 𝑡 ≥ 0}: a Poisson process with arrival rate 

▪ Probability of no arrivals in a small time interval ℎ:

ℙ 𝑁 ℎ = 0 = 𝑒−𝜆ℎ ≈ 1 − 𝜆ℎ

▪ Probability of one arrivals in a small time interval ℎ:

ℙ 𝑁 ℎ = 1 = 𝜆ℎ ⋅ 𝑒−𝜆ℎ ≈ 𝜆ℎ

▪ Probability of two or more arrivals in a small time 
interval ℎ:

ℙ 𝑁 ℎ ≥ 2 = 1 − ℙ 𝑁 ℎ = 0 + ℙ 𝑁 𝑡 = 1

≈ 0

More on Poisson Distribution 
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▪ Probability and random variables

— Random experiment and random variable

— Probability mass/density functions

— Expectation, variance, covariance, correlation

▪ Probability distributions

— Discrete probability distributions

— Continuous probability distributions

— Empirical probability distribution

Outline
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▪ A distribution whose parameters are the observed 
values in a sample of data:

— Could be used if no theoretical distributions fit the data 
adequately

— Advantage: no assumption beyond the observed values in 
the sample

— Disadvantage: sample might not cover the entire range of 
possible values

Empirical Distribution
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▪ “Piecewise Linear” empirical distribution

— Used for continuous data

— Appropriate when a large
sample data is available

— Empirical CDF is approximated 
by a piecewise linear function: 

▪ the ‘jump points’ connected 
by linear functions

Empirical Distribution
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Piecewise Linear
Empirical CDF
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▪ Piecewise Linear empirical distribution

— Organize 𝑋-axis into 𝐾 intervals

— Interval 𝑖 is from 𝑎𝑖−1 to 𝑎𝑖 for 𝑖 = 1,2, … , 𝐾

— 𝑝𝑖: relative frequency of interval 𝑖

— 𝑐𝑖: relative cumulative frequency of interval 𝑖, i.e., 𝑐𝑖 = 𝑝1 +⋯+ 𝑝𝑖

— Empirical CDF: 

▪ If 𝑥 is in interval 𝑖, i.e., 𝑎𝑖−1 < 𝑥 ≤ 𝑎𝑖, then:

𝐹 𝑥 = 𝑐𝑖−1 + 𝛼𝑖 𝑥 − 𝑎𝑖−1

where, slope 𝛼𝑖 is given by

𝛼𝑖 =
𝑐𝑖 − 𝑐𝑖−1
𝑎𝑖 − 𝑎𝑖−1

Empirical Distribution

• • •

𝑎0 𝑎𝐾𝑎𝑖−1 𝑎𝑖

𝐾 intervals

interval 𝑖
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▪ Suppose the data collected for 100 broken machine repair times are:

Example Empirical Distribution

i

Interval 

(Hours) Frequency

Relative 

Frequency

Cumulative 

Frequency Slope

1 0.0 < x ≤ 0.5 31 0.31 0.31 0.62

2 0.5 < x ≤ 1.0 10 0.10 0.41 0.2

3 1.0 < x ≤ 1.5 25 0.25 0.66 0.5

4 1.5 < x ≤ 2.0 34 0.34 1.00 0.68

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2

Piecewise Linear
Empirical CDF

Slope 𝛼3 =
𝑐3−𝑐2

𝑎3−𝑎2
= 0.5

𝑎0 𝑎2 𝑎3 𝑎4𝑎1
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