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Motivating Quote for Queueing Models

“Good things come to those who wait”
- poet/writer Violet Fane, 1892

- song lyrics by Nayobe, 1984
- motto for Heinz Ketchup, USA, 1980’s
- slogan for Guinness stout, UK, 1990’s
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▪ A variety of systems can be modeled as a queue.

▪ A simple but typical queueing model:

▪ Queueing models provide the analyst with a powerful tool for designing 
and evaluating the performance of queueing systems

▪ Typical measures of system performance: 

— Server utilization, length of waiting lines, and delays of customers

— For relatively simple systems, compute results mathematically

— For realistic models of complex systems, simulation is usually required

Queueing Systems
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▪ Key elements of queueing systems:

— Customer: refers to anything that arrives at a facility and 
requires service (e.g., people, machines, trucks, emails)

— Server: refers to any resource that provides the requested 
service (e.g.,  barber, repair person, car wash, file server)

Queueing Systems
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▪ Calling population: the population of potential 
customers, which could be finite or infinite

— Finite population model: arrival rate depends on the 
number of customers in the system, and their current 
states (e.g., if you have only one laptop, and it is currently 
at the repair shop, then the arrival rate of failed laptops 
from you becomes zero)

— Infinite population model: arrival rate is not affected by 
the number of customers in the system (e.g., systems with 
large population of potential customers)

Calling Population
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▪ System capacity: a limit on the maximum number of 
customers that may be in service or waiting in line

— Limited capacity (e.g., an automatic car wash only has 
room for 10 cars to wait in line to enter the wash bay)

— Unlimited capacity (e.g., concert ticket sales with no limit 
on the number of people allowed to wait to purchase 
tickets)

System Capacity
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▪ Queue behavior: the actions of customers while in a queue waiting for 
service to begin, for example:

— Balk: leave when they see that the line is too long

— Renege: leave after being in the line when its moving too slowly

— Jockey: move from one line to a shorter line

▪ Queue discipline: the logical ordering of customers in a queue that 
determines which customer is chosen for service when a server becomes 
available, for example:

— First-in-first-out (FIFO)

— Last-in-first-out (LIFO)

— Service in random order (SIRO)

— Shortest job first (SJF)

— Service according to priority (PRI)

Queue Behavior and Queue Discipline
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Kendall Notation A/S/m/B/K/SD

▪ A : Arrival process

▪ S : Service process 

▪ m : Number of servers

▪ B : System capacity (finite buffer)

▪ K : Population size 

▪ SD : Service discipline

Queueing Notation
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▪ Time between successive arrivals is exponentially distributed

▪ Service times are exponentially distributed

▪ Three servers

▪ 20 capacity = 3 service + 17 waiting

▪ If system is full (20), then any arriving jobs are lost (discarded)

▪ Total of 1500 jobs that can be serviced

▪ Service discipline is First-Come-First-Served (aka FIFO)

Example: M/M/3/20/1500/FCFS 
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▪ M :  Exponential (Markovian, memoryless)

▪ D :  Deterministic  constant

▪ G :  General  Any/all distributions

▪ Default assumptions (unless stated otherwise):
— Infinite system capacity

— Infinite population size

— FCFS service discipline.

▪ G/G/1 = G/G/1/ /  /FCFS  

Common Distributions and Assumptions
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Key Variables (1 of 3)
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▪ τ = Inter-arrival time = time between two successive 
arrivals

▪ λ = Mean arrival rate = 1/E[τ]
May be a function of the state of the system, 
e.g., number of jobs already in the system

▪ s = Service time per job

▪ μ = Mean service rate = 1/E[s]

▪ n = Number of jobs in the system

Note: Number of jobs in the system includes jobs currently 
receiving service as well as those waiting in the queue 

Key Variables (2 of 3)
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▪ nq = Number of jobs waiting

▪ ns =  Number of jobs receiving service

▪ r =  Response time or the sojourn time in the system 
= time waiting + time receiving service

▪ w =  Waiting time 
= Time between arrival and beginning of service

▪ U = Server utilization

Key Variables (3 of 3)
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The following rules apply to all G/G/m queues:

1. Stability Condition:
𝜆 < 𝑚𝜇

— A system is stable if the number of customers waiting in the 
queue remains finite, or equivalently, the wait time is finite

— Finite-population and finite-capacity systems are always stable

2. Server Utilization: 𝑈 =
𝜆

𝑚𝜇

3. Mean Number of Busy Servers:

𝐸[𝑛𝑠] =
𝜆

𝜇

Fundamental Rules for All Queues
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4. Occupancy: 
If jobs are not lost due to insufficient capacity, then:

Mean number of jobs in the system 
= Arrival rate  Mean response time

Similarly:
Mean number of jobs in the queue 
= Arrival  rate  Mean waiting time

This is known as Little’s Law (or Conservation Law)

Fundamental Rules for All Queues (cont’d)
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5. Number in System versus Number in Queue:

n = nq+ ns

Notice that n, nq, and ns are random variables 
E[n] = E[nq]+ E[ns]

6. Time in System versus Time in Queue
r = w + s

r, w, and s are random variables
E[r] = E[w] + E[s]

Fundamental Rules for All Queues (cont’d)
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▪ A physician who schedules patients every 10 minutes and spends 𝑆𝑖 minutes 
with the 𝑖𝑡ℎ patient:

𝑆𝑖 = ቊ
9 minutes with probability 0.9
12 minutes with probability 0.1

— Arrivals are deterministic, 𝜏1 = 𝜏2 = … = 𝜆−1 = 10.

— Services are stochastic, 𝐸(𝑆𝑖) = 9.3 min and 𝑉𝑎𝑟(𝑆𝑖) = 0.9 min2.

— On average, the physician's utilization = 𝜌 =
𝜆

𝜇
= 0.93 < 1.

— Consider the system is simulated with service times: 𝑆1 = 9, 𝑆2 =
12, 𝑆3 = 9, 𝑆4 = 9, 𝑆5 = 9,… . The system occupancy becomes:

— The occurrence of a relatively long service time (𝑆2 = 12) causes a 
waiting line to form temporarily.

Example: Effect of Randomness
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▪ Mean number in the system 
= Arrival rate  Mean response time 

▪ This relationship applies to all systems or parts of systems in 
which the number of jobs entering the system is equal to 
those leaving the system

▪ Named after John D.C. Little (1961)

▪ Based on a black-box view of the system: 

▪ In systems in which some jobs are lost due to finite buffers:
— Use the effective rate of arrivals, e.g., if a portion α are lost, 

then the effective arrival rate is (1 − 𝛼)𝜆

Little's Law

Black
Box

Arrivals Departures
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▪ Sum of response times is the total area under  the curve  
= 𝐿 ⋅ 𝐸[𝑛]

▪ Thus, 
𝑛

𝐿

1

𝑛
σ𝑗=1
𝑛 𝑟𝑗 = 𝐸[𝑛], or 𝜆 ⋅ 𝐸 𝑟 = 𝐸[𝑛]

Proof of Little's Law
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▪ Applying to just the waiting facility of a  service center: 

Mean number in the queue = Arrival rate  Mean waiting time

▪ Similarly, for those currently receiving the service, we have:

Mean number in service = Arrival rate  Mean service time 

Application of Little's Law

Arrivals Departures
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▪ A monitor on a disk server showed that the average 
time to satisfy an I/O request was 100 milliseconds. 
The I/O rate  was about 100 requests per second. 
What was the mean number of requests at the disk 
server?

▪ Using Little's law:

Mean number at the disk server

= Arrival rate  Response time

= 100 (requests/second) (0.1 seconds)

= 10 requests

Example: I/O System Analysis
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▪ Utilization factor, throughput, and Little’s formula are 
not affected by scheduling discipline

▪ Little’s formula can also be applied to an arbitrary 
queueing system (including queueing networks)

Some Properties
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▪ Stochastic Process:
Collection of random variables indexed over time

 Example: {𝑁 𝑡 : 𝑡 ≥ 0}: number of jobs in system at time 𝑡

 Example: {𝑊 𝑡 : 𝑡 ≥ 0}: wait time in system at time 𝑡

▪ State of a process: values it takes over time

— Discrete: states vary over a finite or countable set

— Continuous: states vary continuously over a real interval 

Stochastic Chains

Stochastic Chain: stochastic process with discrete states
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Named after A. Markov who defined and analyzed them in 1907

▪ Markov Process: stochastic process in which the future state 
depends only on the current state, and is independent of the 
past states of the system

— It is not necessary to know how long the process has been in the 
current state to determine the next state

— State time has a memoryless (i.e., exponential) distribution

▪ M/M/m queues can be modeled using Markov processes

— Example: the number of jobs in the queue can be modeled 

as a Markov chain

▪ Markov chain because state space is discrete

▪ State = 0, 1, 2, …

Markov Processes
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▪ Queueing system with a single service facility

▪ Interarrival times are exponentially distributed

▪ Service times are exponentially distributed

▪ Arrival rate and service rate may be state dependent, 
i.e., a function of the state of the system

Birth-Death Markov Chain
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▪ State: Number of jobs n in the system

▪ Birth: Arrival of a new job changes the system state 
from n to n+1

▪ Death: Departure of a job changes the system state 
from n to n-1

Birth-Death Markov Chain

0 1 2 j-1 j j+1…

l0 l1 l2 lj-1 lj lj+1

m1 m2 m3 mj mj+1 mj+2

State-transition diagram
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▪ When the system is in state n, it has n jobs in it:

— The new arrivals take place at rate λn

— The service rate is μn

▪ In steady-state: birth rate = death rate

— If birth rate > death rate: unstable system

— If birth rate < death rate: empty system

Birth-Death Markov Chain

n-1 n

ln-1

mn

𝜆𝑛−1𝑝𝑛−1 = 𝜇𝑛𝑝𝑛

⇒ 𝑝𝑛 =
𝜆𝑛−1
𝜇𝑛

𝑝𝑛−1

……
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▪ The steady-state probability pn of a birth-death 
process being in state n is given by:

▪ Here, p0 is the probability of being in the zero state, 
and can be computed by solving:

෍

𝑛=0

∞

𝑝𝑛 = 1

Steady-State Probability Distribution

Normalizing Condition
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▪ Compute the steady-state probability distribution. 
This involves the evaluation of p0 and pn

▪ Compute

▪ Compute

▪ Use Little’s Law to obtain

Basic Solution Steps
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▪ M/M/1 queue is the most commonly used type of 
queueing model 

▪ Used to model single processor systems or to model 
individual devices in a computer system  

▪ Need to know only the mean arrival rate λ and the 
mean service rate μ

▪ State = number of jobs in the system 

M/M/1 Queue

0 1 2 j-1 j j+1…

l l l l l l

m m m m m m
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▪ Birth-death processes with 

▪ Probability of n jobs in the system:

Results for M/M/1 Queue
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▪ The quantity λ/μ is called traffic intensity and is 
usually denoted by symbol ρ. Thus: 

(geometric distribution!)  

▪ Utilization of the server 
= Probability of having at least one job in the system

Results for M/M/1 Queue (cont’d)
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▪ Mean number of jobs in the system:

▪ Mean number of jobs in the queue: 

Results for M/M/1 Queue (cont’d)
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▪ Probability of n or more jobs in the system:

▪ Mean response time (using Little’s Law):

— Mean number in the system 
= Arrival rate ×Mean response time

— That is: 

Results for M/M/1 Queue (cont’d)

k

kn

n

kn

npknP 








- )1()(

38



Effect of Server Utilization

• Increase in mean response time and number in system is highly 
nonlinear as a function of 𝜌.

• If 𝜌 ≥ 1, waiting line tends to continually grow in length.



▪ On a network router, measurements show that the packets 
arrive at a mean rate of 125 packets per second (pps) and the 
router takes about two milliseconds to forward them. Using 
an M/M/1 model, analyze the router. What is the probability 
of buffer overflow if the router had only 11 buffers? How 
many buffers do we need to keep packet loss below one 
packet per million? 

▪ Arrival rate λ = 125 pps

▪ Service rate μ = 1/.002 = 500 pps

▪ Router Utilization ρ = λ /μ = 0.25

▪ Probability of n packets in the router 
= (1-ρ) ρn = 0.75(0.25)n

Example: Router Design
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▪ Mean Number of packets 
= ρ /(1- ρ) = 0.25/0.75 = 0.33

▪ Mean time spent in the router 
= (1/ μ )/(1- ρ )= (1/500)/(1-0.25) = 2.66 

milliseconds

▪ Probability of buffer overflow 

▪ To limit the probability of loss to less than 10-6:

Example: Router Design (cont’d)

)router in the packets 12 than more(P

897.926)25.0log()2(10 61)1( +-+ -++ nnnn
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▪ The last two results about buffer overflow are 
approximate

▪ Strictly speaking, the router should actually be 
modeled as a finite buffer M/M/1/K queue

▪ Since the utilization is low and the number of buffers 
is far above the mean queue length, the results 
obtained are a close approximation

Wrong Queuing Model?
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M/M/1/K – Single Server, Finite Queuing Space

l
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▪ State-transition diagram:

▪ Solution

Analytic Results
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M/M/m - Multiple Servers
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▪ State-transition diagram:

▪ Solution

Analytic Results
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▪ Infinite number of servers - no queueing

M/M/ - Infinite Servers 

47



▪ State-transition diagram:

▪ Solution

▪ Thus the number of customers in the system follows a Poisson
distribution with rate 𝜌

Analytic Results
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▪ Single-server queue with Poisson arrivals, general 
service time distribution, and unlimited capacity

▪ Suppose service times have mean 
1

𝜇
and variance 𝜎2

▪ For 𝜌 < 1, the steady-state results for 𝑀/𝐺/1 are:

M/G/1 Queue
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— No simple expression for the steady-state probabilities

— Mean number of customers in service: 𝜌 = 𝐸 𝑛 − 𝐸 𝑛𝑞

— Mean number of customers in queue, 𝐸[𝑛𝑞], can be 

rewritten as:

𝐸[𝑛𝑞] =
𝜌2

2 1 − 𝜌
+

𝜆2𝜎2

2 1 − 𝜌

▪ If 𝜆 and 𝜇 are held constant, 𝐸[𝑛𝑞] depends on the 

variability, 𝜎2, of the service times.

M/G/1 Queue
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▪ Example: Two workers are competing for a job. Alex claims to be faster 
than Bo on average, but Bo claims to be more consistent.

— Poisson arrivals at rate 𝜆 = 2 per hour (1/30 per minute).

— Alex: 
1

𝜇
= 24 minutes and 𝜎2 = 202 = 400 minutes2:

𝐸[𝑛𝑞] =

1
30

2

242 + 400

2 1 −
4
5

= 2.711 customers

▪ The proportion of arrivals who find Alex idle and thus experience no delay at all is 
𝑝0 = 1 − 𝜌 = 1/5 = 20%.

— Bo: 1/𝜇 = 25 minutes and 𝜎2 = 22 = 4 minutes2:

𝐸[𝑛𝑞] =

1
30

2

252 + 4

2 1 −
5
6

= 2.097 customers

▪ The proportion of arrivals who find Bo idle and thus experience no delay at all is 
𝑝0 = 1 − 𝜌 = 1/6 = 16.7%.

— Although working faster on average, Alex’s greater service variability results in 
an average queue length about 30% greater than Bo’s queue.

M/G/1 Queue Example
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▪ For almost all queues, if lines are too long, they can be reduced by 
decreasing server utilization (𝜌) or by decreasing the service time 
variability (𝜎2)

▪ Coefficient of Variation: a measure of the variability of a distribution

𝐶𝑉 =
𝑉𝑎𝑟 𝑋

𝐸[𝑋]

— The larger CV is, the more variable is the distribution relative to its 
expected value.

▪ Pollaczek-Khinchin (PK) mean value formula:

Effect of Utilization and Service Variability
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▪ Consider 𝐸[𝑛𝑞] for M/G/1 queue:

Effect of Utilization and Service Variability
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distribution
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