CPSC 531:

UNIVERSITY OF
CALGARY

System Modeling and Simulation

Carey Williamson

Department of Computer Science University of Calgary Fall 2017

Outline

- Random number generation
- Properties of random numbers
- Linear Congruential Generator
- Seed selection and random streams

Random Number Generators (RNG's)

- Requirements
- Sequence generated has uniform distribution (continuous) between 0 and 1
- The numbers in the sequence are independent of each other
- RNG's in computer simulation are pseudorandom
- Each number in the sequence is determined by one or several of its predecessors
- Statistical tests can be used to determine how well the requirements of uniformity and independence are met

Properties of Random Numbers

- Two important statistical properties:
- Uniformity
- Independence
- Random numbers, $x_{1}, x_{2}, x_{3}, \ldots$, must be independently drawn from a uniform distribution with PDF:

$$
f(x)= \begin{cases}1, & 0 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Desirable Properties

- Uniformity and independence
- Should be able to reproduce a given sequence of random numbers
- Helps program debugging
- Helpful when comparing alternative system design
- Should have provision to generate several streams of random numbers
- Computationally efficient

A Sample Generator

$$
x_{n}=5 x_{n-1}+1 \bmod 16
$$

- Starting with $x_{0}=5$:

$$
x_{1}=5(5)+1 \quad \bmod 16=26 \bmod 16=10
$$

- The first 32 numbers obtained by the above procedure $10,3,0,1,6,15,12,13,2,11,8,9,14,7,4,5,10,3,0,1,6,15$, $12,13,2,11,8,9,14,7,4,5$.
- By dividing x 's by 16 :
$0.6250,0.1875,0.0000,0.0625,0.3750,0.9375,0.7500,0.8125,0.1250$, $0.6875,0.5000,0.5625,0.8750,0.4375,0.2500,0.3125,0.6250,0.1875$, $0.0000,0.0625,0.3750,0.9375,0.7500,0.8125,0.1250,0.6875,0.5000$, $0.5625,0.8750,0.4375,0.2500,0.3125$.

Linear Congruential Generator (LCG)

- Commonly used algorithm
- A sequence of integers x_{1}, x_{2}, \ldots between 0 and $m-1$ is generated according to
- $x_{i}=\left(a x_{i-1}+c\right) \bmod m$
- where a and c are constants, m is the modulus and x_{0} is the seed (or starting value)
- Random numbers u_{1}, u_{2}, \ldots are given by $u_{i}=x_{i} / m$
- The sequence can be reproduced if the seed is known

Linear Congruential Generator (LCG)

- Example

$$
\begin{aligned}
& -x_{n}=7 x_{n-1}+3 \bmod 10, x_{0}=3 \\
& \text { - sequence: } 3,4,1,0,3,4,1, \ldots
\end{aligned}
$$

- Example

$$
\begin{aligned}
& -x_{n}=4 x_{n-1}+2 \bmod 9, x_{0}=3 \\
& \text { - sequence: } 3,5,4,0,2,1,6,8,7,3,5,4, \ldots
\end{aligned}
$$

Properties of LCG

- Can have at most m distinct integers in the sequence
- As soon as any number in the sequence is repeated, the whole sequence is repeated
- Period: number of distinct integers generated before repetition occurs
- Problem: Instead of continuous, the u_{i} 's can only take on discrete values $0,1 / m, 2 / m, \ldots,(m-1) / m$
- Solution: m should be selected to be very large in order to achieve the effect of a continuous distribution (typically, $m>10^{9}$)
- Approximation appears to be of little consequence

Characteristics of a Good Generator

- Maximum Density
- Such that the values assumed by $x_{i}, i=1,2, \ldots$ leave no large gaps on [0,1]
- Maximum Period
- To achieve maximum density and avoid cycling
- Achieve by: proper choice of a, c, m, and x_{0}
- Most digital computers use a binary representation of numbers
- Speed and efficiency are aided by a modulus, m, to be (or close to) a power of 2
- Mixed LCG
$-c>0$
- Example:

$$
x_{n}=\left(2^{34}+1\right) x_{n-1}+1 \bmod 2^{35}
$$

- Multiplicative LCG
$-c=0$
- Example:

$$
x_{n}=5 x_{n-1} \bmod 2^{5}
$$

- Generally performs as well as mixed LCG

Example

$$
x_{n}=5 x_{n-1} \bmod 2^{5}
$$

- Using a seed of $x_{0}=1$:

5, 25, 29, 17, 21, 9, 13, 1, 5,...
Period $=8$

- With $x_{0}=2$:

10, 18, 26, 2, 10,...
Period is only 4

Note: Full period is a nice property but uniformity and independence are more important

- A currently popular multiplicative LCG is:

$$
x_{n}=7^{5} x_{n-1} \bmod \left(2^{31}-1\right)
$$

- $2^{31}-1$ is a prime number and 7^{5} is a primitive root of it \rightarrow Full period of 2^{31-2}.
- This generator has been extensively analyzed and shown to be good

$$
\begin{gathered}
\text { See the following book for advanced RNGs: } \\
\text { Numerical Recipes: The Art of Scientific Computing } \\
\text { http://www.nr.com/ }
\end{gathered}
$$

- Seed selection
- Any value in the sequence can be used to "seed" the generator
- Do not use random seeds: such as the time of day
- Cannot reproduce. Cannot guarantee non-overlap.
- Do not use zero:
- Fine for mixed LCGs
- But multiplicative LCGs will be stuck at zero
- Avoid even values:
- For multiplicative LCG with modulus $m=2^{k}$, the seed should be odd
- Do not use successive seeds
- May result in strong correlation

Better to avoid generators that have too many conditions on seed values or whose performance (period and randomness) depends upon the seed value.

Random-Number Streams

- Multi-stream simulations: need more than one random stream
- Do not subdivide one stream: the sub-streams may be correlated
- Use non-overlapping streams
- A random-number stream:
- Refers to a starting seed taken from the sequence of random numbers x_{0}, x_{1}, \ldots
- A single random-number generator with k streams can act like k distinct virtual random-number generators
- Choose the seeds for each stream to be far apart
- To have streams that are b values apart, stream i could be defined by starting seed:

$$
S_{i}=x_{b(i-1)}
$$

Older generators: $b=10^{5}$; Newer generators: $b=10^{37}$

- A complex set of operations leads to random results. It is better to use simple operations that can be analytically evaluated for randomness.
- Random numbers are unpredictable.

Easy to compute the parameters, a, c, and m from a few numbers => LCGs are unsuitable for cryptographic applications

- Some seeds are better than others. May be true for some generators.

$$
x_{n}=\left(9806 x_{n-1}+1\right) \bmod \left(2^{17}-1\right)
$$

- Works correctly for all seeds except $x_{0}=37911$
- Stuck at $x_{n}=37911$ forever
- Such generators should be avoided
- Any non-zero seed in the valid range should produce an equally good sequence
- Generators whose period or randomness depends upon the seed should not be used, since an unsuspecting user may not remember to follow all the guidelines
- Accurate implementation is not important.
- RNGs must be implemented without any overflow or truncation
For example:

$$
x_{n}=1103515245 x_{n-1}+12345 \bmod 2^{31}
$$

- Straightforward multiplication above may produce overflow.

