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Stochastic Process:
Collection of random variables indexed over time

▪ Example:

— N(t): number of jobs in the system at time t

— The number N(t) at any time 𝑡 is a random variable

— Can find the probability distribution functions for N(t) at 
each possible value of t

▪ Notation: {𝑁 𝑡 : 𝑡 ≥ 0}

Stochastic Processes
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▪ Counting Process: 
A stochastic process that represents the total number of 
events occurring in the time interval [0, 𝑡]

▪ Poisson Process: 
The counting process {𝑁 𝑡 , 𝑡 ≥ 0} is a Poisson process with 
rate 𝜆, if:

— 𝑁 0 = 0

— The process has independent increments

— The number of events in any interval of length 𝑡 follows a Poisson 
distribution with mean 𝜆𝑡. That is, for all 𝑠, 𝑡 ≥ 0

ℙ 𝑁 𝑡 + 𝑠 − 𝑁 𝑠 = 𝑛 =
𝜆𝑡 𝑛

𝑛!
𝑒−𝜆𝑡

Property: equal mean and variance: 𝐸 𝑁 𝑡 = 𝑉 𝑁 𝑡 = 𝜆𝑡

Poisson Process
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▪ A common modeling assumption in simulation and/or analysis 
is that of Poisson arrivals (aka Poisson arrival process)

▪ Poisson Arrivals Model: 
— Arrivals occur randomly (i.e., at “random” times)

— No two arrivals occur at exactly the same time

— Inter-arrival times are exponentially distributed and independent

— The counting process (number of events in any interval of length 𝑡)
follows a Poisson distribution with mean 𝜆𝑡. That is, for all 𝑠, 𝑡 ≥ 0

ℙ 𝑁 𝑠 + 𝑡 − 𝑁 𝑠 = 𝑛 =
𝜆𝑡 𝑛

𝑛!
𝑒−𝜆𝑡

Property: equal mean and variance: 𝐸 𝑁 𝑡 = 𝑉 𝑁 𝑡 = 𝜆𝑡

Poisson Arrival Process
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▪ Consider the interarrival times of a Poisson arrival process with 
rate 𝜆, denoted by 𝐴1, 𝐴2, …, where 𝐴𝑖 is the elapsed time between 
arrival 𝑖 and arrival 𝑖 + 1

 Interarrival times, 𝐴1, 𝐴2, … are independent identically distributed 
exponential random variables with mean 1/𝜆

Interarrival Times

Arrival counts   
~ Poisson(𝜆)

Interarrival times   
~ Exponential(𝜆)
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▪ If you combine multiple Poisson processes together (pooling), 
then the resulting process is also Poisson

▪ Aggregate rate is the sum of the individual rates being pooled

▪ Pooling:
— 𝑁1(𝑡): Poisson process with rate 𝜆1
— 𝑁2(𝑡): Poisson process with rate 𝜆2
— 𝑁 𝑡 = 𝑁1 𝑡 + 𝑁2(𝑡): Poisson process with rate 𝜆1 + 𝜆2

Pooling Property

N(t) ~ Poisson(l1 + l2)

N1(t) ~ Poisson(l1)

N2(t) ~ Poisson(l2)

l1 + l2

l1

l2
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▪ If you split a Poisson process “randomly”, then the resulting 
individual processes are also Poisson

▪ Individual rates sum to that of the original process

▪ Splitting:
— 𝑁(𝑡): Poisson process with rate 𝜆

— Each event is classified as Type 1 (probability 𝑝) or Type 2 (probability 
1 − 𝑝)

— 𝑁1(𝑡): The number of Type 1 events is a Poisson process with rate 𝑝𝜆

— 𝑁2(𝑡): The number of Type 2 events is a Poisson process with rate 
(1 − 𝑝)𝜆

— 𝑁 𝑡 = 𝑁1(t) + 𝑁2(𝑡)

Splitting Property

N(t) ~ Poisson(l)

N1(t) ~ Poisson(lp)

N2(t) ~ Poisson(l(1-p))

l

lp

l(1-p) 7



▪ {𝑁 𝑡 , 𝑡 ≥ 0}: a Poisson process with arrival rate l

▪ Probability of no arrivals in a small time interval ℎ:

ℙ 𝑁 ℎ = 0 = 𝑒−𝜆ℎ ≈ 1 − 𝜆ℎ

▪ Probability of one arrivals in a small time interval ℎ:

ℙ 𝑁 ℎ = 1 = 𝜆ℎ ⋅ 𝑒−𝜆ℎ ≈ 𝜆ℎ

▪ Probability of two or more arrivals in a small time 
interval ℎ:

ℙ 𝑁 ℎ ≥ 2 = 1 − ℙ 𝑁 ℎ = 0 + ℙ 𝑁 𝑡 = 1 ≈ 0

More on Poisson Distribution 
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▪ The discussion so far has focused on the temporal aspects of a 
Poisson process (i.e., in time domain)

▪ Similar properties apply to the spatial domain (i.e., location) in 
one or more dimensions

▪ Poisson Point Process: 
— Items are dispersed randomly (i.e., at “random” locations)

— No two items occur at exactly the same place

— Inter-item distances are exponentially distributed and independent

— The counting process (number of events in any region of area A)
follows a Poisson distribution with mean 𝜆𝐴. That is, for all 𝑠, 𝐴 ≥ 0

ℙ 𝑁(𝐴) = 𝑛 =
𝜆𝐴 𝑛

𝑛!
𝑒−𝜆𝐴

Property: equal mean and variance: 𝐸 𝑁 𝐴 = 𝑉 𝑁 𝐴

Aside: Poisson Point Process
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▪ Queueing theory is a well-established area of performance 
modeling that studies the behaviour of queues

▪ Classic textbook: Queueing Systems: Vol 1, by L. Kleinrock

▪ The foundation of queueing theory is built using the types of
probability models that we have just been studying

▪ The goal in this short presentation is to show you the basics of
the M/M/1 queuing model, for which N = ρ/(1-ρ)

▪ This is only a preview; we will revisit this material in much
more depth in late November and/or early December

Bonus Material: Queueing Theory Basics
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▪ λ: The average arrival rate (in customers per time unit)
— The mean inter-arrival time is 1/λ

▪ μ: The average service rate (in customers per time unit)
— The mean service time requirement is 1/μ

▪ ρ: The average load offered to the system
— ρ = λ/μ < 1.0

▪ Kendall notation for queueing systems:
— Arrival process: either M (for Markovian) or G (for General)

— Service time process: either D (for Deterministic), M, or G

— N: The number of servers

▪ Example: M/M/1 is a single-server queue with a Poisson 
arrival process and exponential service times for customers

Notation
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M/M/1 System Model

1
2

μ
0 21 43

λ λ λ λ λ

μ μ μ μ

Markov chain model of classic M/M/1 queue
Birth-death process representing system occupancy
Fixed arrival rate λ
Fixed service rate μ

Mean system occupancy:   N = ρ / (1 – ρ)
Ergodicity requirement: ρ = λ/μ < 1

pn = p0 (λ/μ)n

U = 1 – p0 = ρ

…


