CPSC 531:

UNIVERSITY OF
CALGARY

System Modeling and Simulation

Carey Williamson

Department of Computer Science University of Calgary Fall 2017

Stochastic Processes

Stochastic Process:

Collection of random variables indexed over time

- Example:
$-N(t)$: number of jobs in the system at time t
- The number $N(t)$ at any time t is a random variable
- Can find the probability distribution functions for $N(t)$ at each possible value of t
- Notation: $\{N(t): t \geq 0\}$

Poisson Process

- Counting Process:

A stochastic process that represents the total number of events occurring in the time interval [$0, t$]

- Poisson Process:

The counting process $\{N(t), t \geq 0\}$ is a Poisson process with rate λ, if:
$-N(0)=0$

- The process has independent increments
- The number of events in any interval of length t follows a Poisson distribution with mean λt. That is, for all $s, t \geq 0$

$$
\mathbb{P}(N(t+s)-N(s)=n)=\frac{(\lambda t)^{n}}{n!} e^{-\lambda t}
$$

Property: equal mean and variance: $E[N(t)]=V[N(t)]=\lambda t$

Poisson Arrival Process

- A common modeling assumption in simulation and/or analysis is that of Poisson arrivals (aka Poisson arrival process)
- Poisson Arrivals Model:
- Arrivals occur randomly (i.e., at "random" times)
- No two arrivals occur at exactly the same time
- Inter-arrival times are exponentially distributed and independent
- The counting process (number of events in any interval of length t) follows a Poisson distribution with mean λt. That is, for all $s, t \geq 0$

$$
\mathbb{P}(N(s+t)-N(s)=n)=\frac{(\lambda t)^{n}}{n!} e^{-\lambda t}
$$

Property: equal mean and variance: $E[N(t)]=V[N(t)]=\lambda t$

Interarrival Times

- Consider the interarrival times of a Poisson arrival process with rate λ, denoted by A_{1}, A_{2}, \ldots, where A_{i} is the elapsed time between arrival i and arrival $i+1$

■ Interarrival times, A_{1}, A_{2}, \ldots are independent identically distributed exponential random variables with mean $1 / \lambda$

```
Arrival counts Interarrival times
    ~ Poisson( }\lambda\mathrm{ )
```

~ Exponential (λ)

Pooling Property

- If you combine multiple Poisson processes together (pooling), then the resulting process is also Poisson
- Aggregate rate is the sum of the individual rates being pooled
- Pooling:
$-N_{1}(t):$ Poisson process with rate λ_{1}
$-N_{2}(t)$: Poisson process with rate λ_{2}
$-N(t)=N_{1}(t)+N_{2}(t)$: Poisson process with rate $\lambda_{1}+\lambda_{2}$

Splitting Property

- If you split a Poisson process "randomly", then the resulting individual processes are also Poisson
- Individual rates sum to that of the original process
- Splitting:
$-N(t)$: Poisson process with rate λ
- Each event is classified as Type 1 (probability p) or Type 2 (probability $1-p$)
$-N_{1}(t)$: The number of Type 1 events is a Poisson process with rate $p \lambda$
$-N_{2}(t)$: The number of Type 2 events is a Poisson process with rate $(1-p) \lambda$
$-N(t)=N_{1}(\mathrm{t})+N_{2}(t)$

More on Poisson Distribution

- $\{N(t), t \geq 0\}$: a Poisson process with arrival rate λ
- Probability of no arrivals in a small time interval h :

$$
\mathbb{P}(N(h)=0)=e^{-\lambda h} \approx 1-\lambda h
$$

- Probability of one arrivals in a small time interval h :

$$
\mathbb{P}(N(h)=1)=\lambda h \cdot e^{-\lambda h} \approx \lambda h
$$

- Probability of two or more arrivals in a small time interval h :
$\mathbb{P}(N(h) \geq 2)=1-(\mathbb{P}(N(h)=0)+\mathbb{P}(N(t)=1)) \approx 0$

Aside: Poisson Point Process

- The discussion so far has focused on the temporal aspects of a Poisson process (i.e., in time domain)
- Similar properties apply to the spatial domain (i.e., location) in one or more dimensions
- Poisson Point Process:
- Items are dispersed randomly (i.e., at "random" locations)
- No two items occur at exactly the same place
- Inter-item distances are exponentially distributed and independent
- The counting process (number of events in any region of area A) follows a Poisson distribution with mean λA. That is, for all $s, A \geq 0$

$$
\mathbb{P}(N(A)=n)=\frac{(\lambda A)^{n}}{n!} e^{-\lambda A}
$$

Property: equal mean and variance: $E[N(A)]=V[N(A)]$

Bonus Material: Queueing Theory Basics

- Queueing theory is a well-established area of performance modeling that studies the behaviour of queues
- Classic textbook: Queueing Systems: Vol 1, by L. Kleinrock
- The foundation of queueing theory is built using the types of probability models that we have just been studying
- The goal in this short presentation is to show you the basics of the $M / M / 1$ queuing model, for which $N=\rho /(1-\rho)$
- This is only a preview; we will revisit this material in much more depth in late November and/or early December
- λ : The average arrival rate (in customers per time unit)
- The mean inter-arrival time is $1 / \lambda$
- μ : The average service rate (in customers per time unit)
- The mean service time requirement is $1 / \mu$
- ρ : The average load offered to the system
$-\rho=\lambda / \mu<1.0$
- Kendall notation for queueing systems:
- Arrival process: either M (for Markovian) or G (for General)
- Service time process: either D (for Deterministic), M, or G
- N : The number of servers
- Example: $\mathrm{M} / \mathrm{M} / 1$ is a single-server queue with a Poisson arrival process and exponential service times for customers

M/M/1 System Model

Markov chain model of classic $M / M / 1$ queue
Birth-death process representing system occupancy
Fixed arrival rate λ
Fixed service rate μ

Mean system occupancy: $N=\rho /(1-\rho)$
$p_{n}=p_{0}(\lambda / \mu)^{n}$
Ergodicity requirement: $\rho=\lambda / \mu<1 \quad U=1-p_{0}=\rho$

