

Experimental Calibration and Validation of a Speed Scaling Simulator

Arsham Skrenes Carey Williamson Department of Computer Science University of Calgary

Speed Scaling: Inherent Tradeoffs

Dynamic Speed Scaling: adapt service rate to the current state of the system to balance energy consumption and performance.

- Minimize power consumption P
 - Minimize energy cost *ε*
 - Minimize heat, wear, etc.

- Minimize response time T
 - Minimize delay
- Maximize job throughput

Background: Theory and Systems

Theoretical Research

- Goal: optimality
- Domains: CPU, parallel systems
- Methods: proofs, complexity, competitive analysis, queueing theory, Markov chains, worst case, asymptotics, simulation
- Metrics: E[T], E[ε], combo, slowdown, competitive ratio
- Power: $P = s^{\alpha}$ ($2 \le \alpha \le 3$)
- Schedulers: PS, SRPT, FSP, YDS
- Speed scalers: job-count-based, continuous and unbounded speeds
- Venues: SIGMETRICS, PEVA, Performance, INFOCOM, OR

Systems Research

- Goal: practicality
- Domains: CPU, disk, network
- Methods: DVFS, power meter, measurement, benchmarking, simulation, power gating, overclocking, simulation
- Metrics: response time, energy, heat, utilization
- Power: P = a $C_{eff} V^2 f$
- Schedulers: FCFS, RR, FB
- Speed scalers: threshold-based, discrete and finite speeds
- Venues: SIGMETRICS, SOSP, OSDI, ISCA, MASCOTS, TOCS

Energy Cost vs Response Time (10 linear jobs; $\alpha = 2$)

Simulation Results

TABLE IV Simulation results for mean response time E[T] and energy consumption (PP0 and PKG) (12 JOBS, $\alpha = 1$)

Speed	Workload 1					Work	load 2		Workload 3			
Scaling	Time	E[T]	PP0	PKG	Time	E[T]	PP0	PKG	Time	E[T]	PP0	PKG
Policy	(s)	(s)	(J)	(J)	(s)	(s)	(J)	(J)	(s)	(s)	(J)	(J)
PS	14.4	14.4	75.5	132.4	47.2	29.9	205.1	387.3	167.5	38.4	564.8	1199.0
FSP-PS	14.4	7.8	75.5	132.3	47.2	16.3	205.0	387.3	167.5	25.7	564.8	1199.0
YDS	14.4	7.8	75.5	132.3	46.2	17.5	204.4	383.3	164.5	27.4	562.9	1186.8

- Single-server queue for CPU service
- Single batch of n jobs arrive at time 0
- Job sizes known in advance
- Dynamic speed scaling with s = f(n)
- Power consumption $P = s^{\alpha}$ where $1 \le \alpha \le 3$
- Maximum system speed is unbounded
- System speeds are continuous (not discrete)
- Context switches are free (i.e., zero cost)
- Speed changes are free (i.e., zero cost)

Question: How would they perform on <u>real</u> systems?

- Flexible framework for the experimental evaluation of arbitrary scheduling and speed scaling policies
- Hybrid user-mode and kernel-mode implementation
- User space: CSV file input to specify workload
- Kernel space: carefully-controlled job execution, timing, and energy measurement using RAPL MSRs

- Non-architectural model-specific registers (MSRs)
- Four domains (but only three for any given CPU):
 - PPO: Power Plane 0 for the CPU cores
 - PP1: Power Plane 1 for GPU (consumer machines only)
 - DRAM: Memory energy (server-class machines only)
 - PKG: Energy usage by rest of the CPU chip package
- Highly accurate power meters for each domain (matches well with external power measurements)
- Experiments conducted on Macbook Pro Retina laptop (2012): 2.3 GHz quad-core Intel i7-3615 QM Ivy Bridge processor; Ubuntu Linux 14.04 LTS; compute-intensive workload with no I/O, memory, or networking involved

Measurement Results

Frequency (MHz)	PP0 (W)	PKG (W)	Context Switch (us)	Speed Switch (us)	Mode Switch (ns)
2301 (3300)	11.5	15.3	1.140	0.76	44.8
2300	5.4	9.2	1.634	1.09	64.2
2200	5.0	8.9	1.708	1.14	67.0
2100	4.8	8.6	1.808	1.20	70.2
2000	4.6	8.4	1.898	1.26	73.7
1900	4.5	8.3	1.999	1.32	78.3
1800	4.3	8.0	2.118	1.38	81.9
1700	4.1	7.9	2.213	1.47	86.7
1600	3.9	7.6	2.369	1.56	92.1
1500	3.7	7.5	2.526	1.67	98.6
1400	3.5	7.3	2.709	1.81	105.3
1300	3.3	7.1	2.886	1.93	113.4
1200	3.1	6.9	3.167	2.09	123.1

Experimental Evaluation Setup

- Three workloads (each with batch of 12 jobs):
 - 1. Homogenous
 - 2. Additive (arithmetic progression)
 - 3. Multiplicative (factors of 2)
- Three algorithms (all with α=1):
 - 1. PS (epitomizes fairness)
 - 2. FSP-PS (decoupled speed scaling; improves mean response time while retaining fairness)
 - 3. YDS (minimizes power consumption)

TABLE III

Experimental results for mean response time E[T] and energy consumption (PP0 and PKG) (12 JOBS, $\alpha = 1$)

Speed	Workload 1					Wor	kload 2		Workload 3			
Scaling	Time	E[T]	PP0	PKG	Time	E[T]	PP0	PKG	Time	E[T]	PP0	PKG
Policy	(s)	(2)	(J)	(J)	(s)	(s)	(J)	(J)	(s)	(s)	(J)	(J)
PS	14.57	14.49	76.80	131.50	46.23	30.10	199.99	372.98	166.15	38.05	562.47	1184.36
FSP-PS	14.57	7.9	76.77	131.60	46.21	16.4	199.41	372.36	166.08	25.7	560.35	1180.83
YDS	14.55	7.9	76.49	130.93	45.80	17.1	198.83	369.88	163.12	27.0	560.94	1170.05

- Observation 1: Decoupled speed scaling (FSP-PS) provides a significant response time advantage over PS, for the "same" energy costs
- Observation 2: The response time advantage of FSP-PS decreases as job size variability increases
- Observation 3: FSP-PS has a slight energy advantage over PS because of fewer context switches between jobs
- Observation 4: YDS has the lowest energy consumption among these policies (even better than expected due to discretization effect, and no speed changes)

Simulation Results

TABLE IV Simulation results for mean response time E[T] and energy consumption (PP0 and PKG) (12 Jobs, $\alpha = 1$)

Speed		Workl	oad 1			Work	load 2		Workload 3			
Scaling	Time	E[T]	PP0	PKG	Time	E[T]	PP0	PKG	Time	E[T]	PP0	PKG
Policy	(s)	(s)	(J)	(J)	(s)	(s)	(J)	(J)	(s)	(s)	(J)	(J)
PS	14.4	14.4	75.5	132.4	47.2	29.9	205.1	387.3	167.5	38.4	564.8	1199.0
FSP-PS	14.4	7.8	75.5	132.3	47.2	16.3	205.0	387.3	167.5	25.7	564.8	1199.0
YDS	14.4	7.8	75.5	132.3	46.2	17.5	204.4	383.3	164.5	27.4	562.9	1186.8