
Experimental
Calibration and Validation
of a Speed Scaling Simulator

Arsham Skrenes
Carey Williamson
Department of Computer Science
University of Calgary

IEEE MASCOTS 2016

▪ Minimize power consumption P

▪ Minimize energy cost ε

▪ Minimize heat, wear, etc.

▪ Minimize response time T

▪ Minimize delay

▪ Maximize job throughput

Run
faster:

less
delay

Run
slower:

less
energy

Dynamic Speed Scaling: adapt service rate to the current state of the system
to balance energy consumption and performance.

2

Speed Scaling: Inherent Tradeoffs

Background: Theory and Systems

Theoretical Research Systems Research

▪ Goal: optimality

▪ Domains: CPU, parallel systems

▪ Methods: proofs, complexity,
competitive analysis, queueing
theory, Markov chains, worst case,
asymptotics, simulation

▪ Metrics: E[T], E[ε], combo,
slowdown, competitive ratio

▪ Power: P = sα (2 ≤ α ≤ 3)

▪ Schedulers: PS, SRPT, FSP, YDS

▪ Speed scalers: job-count-based,
continuous and unbounded speeds

▪ Venues: SIGMETRICS, PEVA,
Performance, INFOCOM, OR

▪ Goal: practicality

▪ Domains: CPU, disk, network

▪ Methods: DVFS, power meter,
measurement, benchmarking,
simulation, power gating, over-
clocking, simulation

▪ Metrics: response time, energy,
heat, utilization

▪ Power: P = a Ceff V2 f

▪ Schedulers: FCFS, RR, FB

▪ Speed scalers: threshold-based,
discrete and finite speeds

▪ Venues: SIGMETRICS, SOSP, OSDI,
ISCA, MASCOTS, TOCS

3

PSFSP-PS

FSP

T-FSP

YDS

α

4

Example Simulation Results: IEEE MASCOTS 2014

Simulation Results

5

Typical Modeling Assumptions

▪ Single-server queue for CPU service

▪ Single batch of n jobs arrive at time 0

▪ Job sizes known in advance

▪ Dynamic speed scaling with s = f(n)

▪ Power consumption P = sα where 1 ≤ α ≤ 3

▪ Maximum system speed is unbounded

▪ System speeds are continuous (not discrete)

▪ Context switches are free (i.e., zero cost)

▪ Speed changes are free (i.e., zero cost)

6

Question: How would they perform on real systems?

Profilo Design [Skrenes 2016]

7

7

▪ Flexible framework for the experimental evaluation
of arbitrary scheduling and speed scaling policies

▪ Hybrid user-mode and kernel-mode implementation

▪ User space: CSV file input to specify workload

▪ Kernel space: carefully-controlled job execution,
timing, and energy measurement using RAPL MSRs

User space

Kernel space

P1 5 20
P2 7 12
P3 2 50
P1 1 10
P4 10 8
P2 5 30
…

1. Process args
2. Set up environment
3. Profiling
4. Summarize results

Work unit (primes)
Do work (loops)
Sleep busy
Sleep deep

sysfs API

Running Average Power Limit (RAPL)

▪ Non-architectural model-specific registers (MSRs)

▪ Four domains (but only three for any given CPU):

— PP0: Power Plane 0 for the CPU cores

— PP1: Power Plane 1 for GPU (consumer machines only)

— DRAM: Memory energy (server-class machines only)

— PKG: Energy usage by rest of the CPU chip package

▪ Highly accurate power meters for each domain
(matches well with external power measurements)

▪ Experiments conducted on Macbook Pro Retina laptop
(2012): 2.3 GHz quad-core Intel i7-3615 QM Ivy Bridge
processor; Ubuntu Linux 14.04 LTS; compute-intensive
workload with no I/O, memory, or networking involved

8

9

9

Frequency
(MHz)

PP0 (W) PKG (W) Context
Switch (us)

Speed Switch
(us)

Mode
Switch (ns)

2301 (3300) 11.5 15.3 1.140 0.76 44.8

2300 5.4 9.2 1.634 1.09 64.2

2200 5.0 8.9 1.708 1.14 67.0

2100 4.8 8.6 1.808 1.20 70.2

2000 4.6 8.4 1.898 1.26 73.7

1900 4.5 8.3 1.999 1.32 78.3

1800 4.3 8.0 2.118 1.38 81.9

1700 4.1 7.9 2.213 1.47 86.7

1600 3.9 7.6 2.369 1.56 92.1

1500 3.7 7.5 2.526 1.67 98.6

1400 3.5 7.3 2.709 1.81 105.3

1300 3.3 7.1 2.886 1.93 113.4

1200 3.1 6.9 3.167 2.09 123.1

Measurement Results

Experimental Evaluation Setup

▪ Three workloads (each with batch of 12 jobs):

1. Homogenous

2. Additive (arithmetic progression)

3. Multiplicative (factors of 2)

▪ Three algorithms (all with α=1):

1. PS (epitomizes fairness)

2. FSP-PS (decoupled speed scaling; improves mean
response time while retaining fairness)

3. YDS (minimizes power consumption)

10

Experimental Evaluation Results

11

• Observation 1: Decoupled speed scaling (FSP-PS) provides a significant response
time advantage over PS, for the “same” energy costs

• Observation 2: The response time advantage of FSP-PS decreases as job size
variability increases

• Observation 3: FSP-PS has a slight energy advantage over PS because of fewer
context switches between jobs

• Observation 4: YDS has the lowest energy consumption among these policies
(even better than expected due to discretization effect, and no speed changes)

Simulation Results

12

