CPSC 531:

UNIVERSITY OF
CALGARY

System Modeling and Simulation

Carey Williamson

Department of Computer Science University of Calgary Fall 2017

Recap and Terminology

- (Pseudo-) Random Number Generation (RNG)
- A fundamental primitive required for simulations
- Goal: Uniform(0,1)
- Uniformity
- Independence
- Computational efficiency
- Long period
- Multiple streams
- Common approach: LCG
- Careful design and seeding
- Never generates 0.0 or 1.0
- Covered in guest lecture (JH)
- Readings: 2.1, 2.2
- Random Variate Generation (RVG)
- Builds upon Uniform(0,1)
- Goal: any distribution
- Discrete distributions
- Continuous distributions
- Independence (usually)
- Correlation (if desired)
- Computational efficiency
- Common approach: the inverse transform method
- Straightforward math (usually)
- Might generate 0.0 or 1.0
- Covered in today's lecture
- Readings: 6.1,6.2

Outline

- Random variate generation
- Inverse transform method
- Convolution method
- Empirical distribution
- Other techniques

Discrete-Event Simulation

- Input parameters such as inter-arrival times and service times are often modeled by random variables with some given distributions
- A mechanism is needed to generate variates for a wide class of distributions

This can be done using a sequence of random numbers that are independent of each other and are uniformly distributed between 0 and 1

Uniform Random Numbers

- Uniformly distributed between 0 and 1
- Consider a sequence of random numbers $u_{1}, u_{2}, \ldots, u_{N}$

- Uniformity: expected number of random numbers in each sub-interval is N / n
- Independence: value of each random number is not affected by any other numbers

Bernoulli Variate

A Bernoulli variate is useful for generating a binary outcome (0 or 1) to represent "success" (1) or "failure" (0)

Example: wireless network packet transmission
Example: coin flipping to produce "heads" or "tails"

Bernoulli trial (with parameter p)

$$
p(1)=p, \quad p(0)=1-p
$$

- Random variate generation
- Generate u
- If $0<u \leq p, x=1$;
- Otherwise $x=0$

Inverse Transformation Method: Discrete Distributions

- Consider a tri-modal discrete distribution
- Example: size of an email message (in paragraphs, or KB)
- Example: $p(1)=0.5, p(2)=0.3, p(3)=0.2$
- Cumulative distribution function, $F(x)$

Discrete Distributions

- Algorithm
- Generate random number u
-Random variate $x=i$ if $F(i-1)<u \leq F(i)$
- Example: $F(0)=0, F(1)=0.5, F(2)=0.8, F(3)=1.0$

$$
\begin{array}{lr}
-0<u \leq 0.5 & \text { variate } x=1 \\
-0.5<u \leq 0.8 & \text { variate } x=2 \\
-0.8<u \leq 1.0 & \text { variate } x=3
\end{array}
$$

Discrete Uniform Variate

- Discrete uniform (with parameters a and b)

$$
\begin{aligned}
& p(n)=1 /(b-a+1) \text { for } n=a, a+1, \ldots, b \\
& F(n)=(n-a+1) /(b-a+1)
\end{aligned}
$$

- Random variate generation
- Generate u
$-x=a+\operatorname{floor}(u *(b-a+1)) \quad$ OR
$-x=(a-1)+\operatorname{ceiling}(u *(b-a+1))$

Geometric Variate

- Geometric (with parameter p)

$$
p(n)=p(1-p)^{n-1}, \mathrm{n}=1,2,3, \ldots
$$

- Gives the number of Bernoulli trials until achieving the first success
- Random variate generation
- Generate u
- Geometric variate $x=\left\lceil\frac{\ln (u)}{\ln (1-p)}\right\rceil$
- Algorithm
-Generate uniform random number u
-Solve $F(x)=u$ for random variate x

- Define the random variable Y as:

$$
Y=F(X)
$$

$$
\mathbb{P}(Y \leq y)=\mathbb{P}(X \leq x)=y
$$

Therefore,

$$
Y \sim U(0,1)
$$

Continuous Uniform Variate

- Uniform (with parameters a and b)

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{cc}
1 /(b-a) & a \leq x \leq b, \\
0 & \text { otherwise }
\end{array}\right. \\
& F(x)=(x-a) /(b-a), a \leq x \leq b
\end{aligned}
$$

- Random variate generation
- Generate u
$-x=a+(b-a) u$

Exponential Variate

- Exponential (with parameter λ)

$$
\begin{aligned}
& f(x)=\lambda e^{-\lambda x} \\
& F(x)=1-e^{-\lambda x}
\end{aligned}
$$

- Random variate generation
-Generate u
$-x=-\left(\frac{1}{\lambda}\right) \cdot \ln (u)$
- Can also use $x=-\left(\frac{1}{\lambda}\right) \cdot \ln (1-u)$

Note: If u is Uniform $(0,1)$, then $1-u$ is Uniform $(0,1)$ too!

Convolution Method

- Sum of n variables: $x=y_{1}+y_{2}+\cdots+y_{n}$

1. Generate n random variate y_{i} 's
2. The random variate x is given by the sum of y_{i} 's

Example: the sum of two fair dice that are rolled $P(x=2)=1 / 36 ; P(x=3)=2 / 36 ; P(x=4)=3 / 36$;
$P(x=5)=4 / 36 ; P(x=6)=5 / 36 ; P(x=7)=6 / 36$;
$P(x=8)=5 / 36 ; P(x=9)=4 / 36 ; P(x=10)=3 / 36$;
$P(x=11)=2 / 36 ; P(x=12)=1 / 36$

Geometric Variate

- Geometric (with parameter p)

$$
p(n)=p(1-p)^{n-1}, \mathrm{n}=1,2,3, \ldots
$$

- Gives the number of Bernoulli trials until achieving the first success

```
    - let \(b=0, n=0\)
    -while ( \(b==0\) )
    - Generate Bernoulli variate \(b\) with
        parameter \(p\)
    - Geometric variate \(n=n+1\)
```

Inefficient!!

Binomial Variate

- Binomial (with parameters p and n)

$$
p(k)=\mathbb{P}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, k=0,1, \ldots, n
$$

Random variate generation
-Generate n Bernoulli variates, $y_{1}, y_{2}, \ldots, y_{n}$

- Binomial variate $x=y_{1}+y_{2}+\cdots+y_{n}$

Poisson Variate

- Poisson (with parameter λ)

$$
p(k)=\mathbb{P}(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda}, k=0,1,2, \ldots
$$

- Random variate generation (based on the relationship with exponential distribution)

```
    - let }s=0,n=
    -while (s\leq1)
    - Generate exponential variate y with parameter
        \lambda
    - s=s+y
    - n=n+1
    - Poisson variate }x=n-
```


Other Techniques: Normal Variate

- Normal (with parameters μ and σ^{2})

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}, \text { for }-\infty \leq x \leq+\infty
$$

- Random variate generation using approximation method
- Generate two random numbers u_{1} and u_{2}
- Random variates x_{1} and x_{2} are given by:

$$
\begin{aligned}
& x_{1}=\mu+\sigma \sqrt{-2 \ln \left(u_{1}\right)} \cdot \cos \left(2 \pi u_{2}\right) \\
& x_{2}=\mu+\sigma \sqrt{-2 \ln \left(u_{1}\right)} \cdot \sin \left(2 \pi u_{2}\right)
\end{aligned}
$$

Empirical Distribution

Could be used if no theoretical distributions fit the data adequately

- Example: Piecewise Linear empirical distribution
- Used for continuous data
- Appropriate when a large sample data is available
- Empirical CDF is approximated by a piecewise linear function:
- the 'jump points' connected by linear functions

Piecewise Linear Empirical CDF

Empirical Distribution

- Piecewise Linear empirical distribution
- Organize X-axis into K intervals
- Interval i is from a_{i-1} to a_{i} for $i=1,2, \ldots, K$
- p_{i} : relative frequency of interval i
$-c_{i}$: relative cumulative frequency of interval i, i.e., $c_{i}=p_{1}+\cdots+p_{i}$

- Empirical CDF:
K intervals
- If x is in interval i, i.e., $a_{i-1}<x \leq a_{i}$, then:

$$
F(x)=c_{i-1}+\alpha_{i}\left(x-a_{i-1}\right)
$$

where, slope α_{i} is given by

$$
\alpha_{i}=\frac{c_{i}-c_{i-1}}{a_{i}-a_{i-1}}
$$

Example Empirical Distribution

- Suppose the data collected for 100 broken machine repair times are:

\boldsymbol{i}	Interval (Hours)	Frequency	Relative Frequency	Cumulative Frequency	Slope
1	$0.0<x \leq 0.5$	31	0.31	0.31	0.62
2	$0.5<x \leq 1.0$	10	0.10	0.41	0.2
3	$1.0<x \leq 1.5$	25	0.25	0.66	0.5
4	$1.5<x \leq 2.0$	34	0.34	1.00	0.68

Empirical Distribution

- Random variate generation:
- Generate random number u
- Select the appropriate interval i such that

$$
c_{i-1}<u \leq c_{i}
$$

- Use the inverse transformation method to compute the random variate x as follows

$$
x=a_{i-1}+\frac{1}{\alpha_{i}}\left(u-c_{i-1}\right)
$$

Example Empirical Distribution

- Suppose the data collected for 100 broken machine repair times are:

\boldsymbol{i}	Interval (Hours)	Frequency	Relative Frequency	Cumulative Frequency	Slope
1	$0.25<x \leq 0.5$	31	0.31	0.31	1.24
2	$0.5<x \leq 1.0$	10	0.10	0.41	0.2
3	$1.0<x \leq 1.5$	25	0.25	0.66	0.5
4	$1.5<x \leq 2.0$	34	0.34	1.00	0.68

- Suppose: $u=0.83$

$$
c_{3}=0.66<u \leq c_{4}=1.00 \Rightarrow i=4
$$

$$
\begin{aligned}
x & =a_{3}+\frac{1}{\alpha_{4}}\left(u-c_{3}\right) \\
& =1.5+\frac{1}{0.68}(0.83-0.66) \\
& =1.75
\end{aligned}
$$

