

CPSC 531: System Modeling and Simulation

Carey Williamson Department of Computer Science University of Calgary Fall 2017

Recap and Terminology

- (Pseudo-) Random <u>Number</u> Generation (RNG)
- A fundamental primitive required for simulations
- Goal: Uniform(0,1)
- Uniformity
- Independence
- Computational efficiency
- Long period
- Multiple streams
- Common approach: LCG
- Careful design and seeding
- Never generates 0.0 or 1.0
- Covered in guest lecture (JH)
- Readings: 2.1, 2.2

- Random <u>Variate</u> Generation (RVG)
- Builds upon Uniform(0,1)
- Goal: **any** distribution
- Discrete distributions
- Continuous distributions
- Independence (usually)
- Correlation (if desired)
- Computational efficiency
- Common approach: the inverse transform method
- Straightforward math (usually)
- Might generate 0.0 or 1.0
- Covered in today's lecture
- Readings: 6.1, 6.2

- Random variate generation
 - Inverse transform method
 - Convolution method
 - Empirical distribution
 - Other techniques

- Input parameters such as inter-arrival times and service times are often modeled by random variables with some given distributions
- A mechanism is needed to generate variates for a wide class of distributions

This can be done using a sequence of random numbers that are independent of each other and are uniformly distributed between 0 and 1

- Uniformly distributed between 0 and 1
 - Consider a sequence of random numbers $u_1, u_2, ..., u_N$

- Uniformity: expected number of random numbers in each sub-interval is N/n
- Independence: value of each random number is not affected by any other numbers

A Bernoulli variate is useful for generating a binary outcome (0 or 1) to represent "success" (1) or "failure" (0) Example: wireless network packet transmission Example: coin flipping to produce "heads" or "tails"

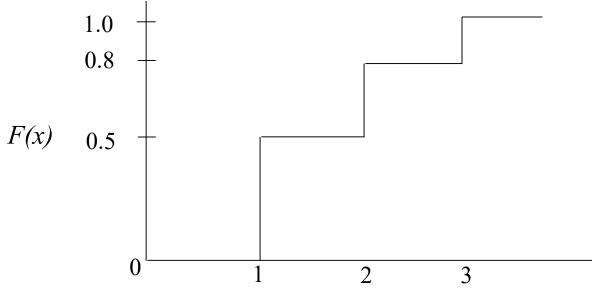
Bernoulli trial (with parameter *p*)

 $p(1) = p, \qquad p(0) = 1 - p$

Random variate generation

- -Generate u
- $\text{ If } 0 < u \leq p, x = 1;$
- -Otherwise x = 0

- Consider a tri-modal discrete distribution
 - Example: size of an email message (in paragraphs, or KB)
 - Example: p(1) = 0.5, p(2) = 0.3, p(3) = 0.2
- Cumulative distribution function, F(x)



Algorithm

-Generate random number $m{u}$

-Random variate x = i if $F(i-1) < u \le F(i)$

• Example: F(0) = 0, F(1) = 0.5, F(2) = 0.8, F(3) = 1.0 $-0 < u \le 0.5$ variate x = 1 $-0.5 < u \le 0.8$ variate x = 2 $-0.8 < u \le 1.0$ variate x = 3

Discrete uniform (with parameters a and b)

$$p(n) = 1/(b - a + 1)$$
 for $n = a, a + 1, ..., b$
 $F(n) = (n - a + 1)/(b - a + 1)$

- Random variate generation
 - -Generate u -x = a + floor(u * (b - a + 1)) OR -x = (a - 1) + ceiling(u * (b - a + 1))

Geometric Variate

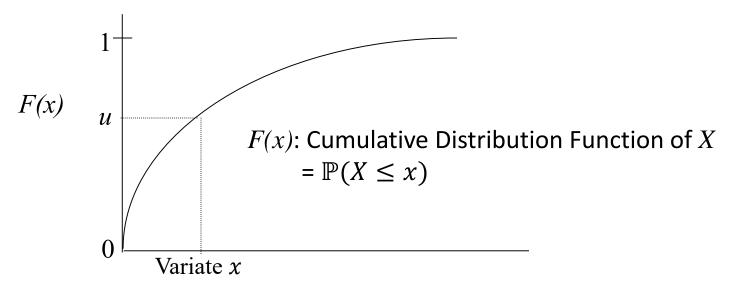
- Geometric (with parameter p) $p(n) = p(1-p)^{n-1}$, n = 1,2,3, ...
- Gives the number of Bernoulli trials until achieving the first success
- Random variate generation
 - -Generate u

-Geometric variate
$$x = \left[\frac{\ln(u)}{\ln(1-p)}\right]$$

Inverse Transformation Method: Continuous Distributions

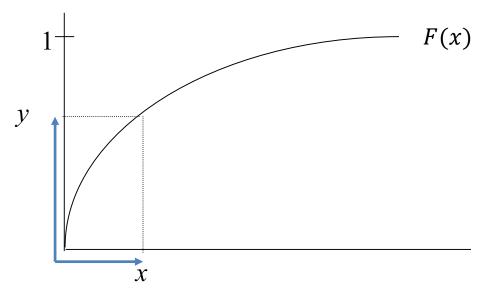
Algorithm

- -Generate uniform random number $m{u}$
- -Solve F(x) = u for random variate x



Proof

• Define the random variable Y as: Y = F(X)



 $\mathbb{P}(Y \le y) = \mathbb{P}(X \le x) = y$

Therefore,

 $Y \sim U(0, 1)$

Continuous Uniform Variate

Uniform (with parameters a and b)

$$f(x) = \begin{cases} 1/(b-a) & a \le x \le b, \\ 0 & \text{otherwise.} \end{cases}$$

$$F(x) = (x - a)/(b - a), a \le x \le b$$

Random variate generation

-Generate
$$u$$

$$-x = a + (b - a)u$$

Exponential Variate

• Exponential (with parameter λ) $f(x) = \lambda e^{-\lambda x}$

$$F(x)=1-e^{-\lambda x}$$

Random variate generation

-Generate
$$u$$

$$-x = -\left(\frac{1}{\lambda}\right) \cdot \ln(u)$$

• Can also use
$$x = -\left(\frac{1}{\lambda}\right) \cdot \ln(1 - u)$$

Note: If u is Uniform(0,1), then 1 - u is Uniform(0,1) too!

Convolution Method

- Sum of *n* variables: $x = y_1 + y_2 + \dots + y_n$
- **1**. Generate *n* random variate y_i 's
- 2. The random variate x is given by the sum of y_i 's

Example: the sum of two fair dice that are rolled P(x=2) = 1/36; P(x=3) = 2/36; P(x=4) = 3/36; P(x=5) = 4/36; P(x=6) = 5/36; P(x=7) = 6/36; P(x=8) = 5/36; P(x=9) = 4/36; P(x=10) = 3/36;P(x=11) = 2/36; P(x=12) = 1/36

- Geometric (with parameter p) $p(n) = p(1-p)^{n-1}$, n = 1,2,3, ...
- Gives the number of Bernoulli trials until achieving the first success

-let
$$b=0$$
, $n=0$

-while (b == 0)

- Generate Bernoulli variate b with parameter p
- Geometric variate n = n + 1

Binomial (with parameters p and n)

$$p(k) = \mathbb{P}(X = k) = {\binom{n}{k}} p^k (1-p)^{n-k}, k = 0, 1, ..., n$$

Random variate generation

- -Generate n Bernoulli variates, $y_1, y_2, ..., y_n$
- -Binomial variate $x = y_1 + y_2 + \dots + y_n$

Poisson Variate

- Poisson (with parameter λ) $p(k) = \mathbb{P}(X = k) = \frac{\lambda^k}{k!}e^{-\lambda}, \ k = 0,1,2,...$
- Random variate generation (based on the relationship with exponential distribution)

$$- \text{let } s = 0, \ n = 0$$

-while $(s \leq 1)$

- Generate exponential variate y with parameter λ

$$\bullet \ n = n + 1$$

- Poisson variate x = n - 1

• Normal (with parameters μ and σ^2)

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$
, for $-\infty \le x \le +\infty$

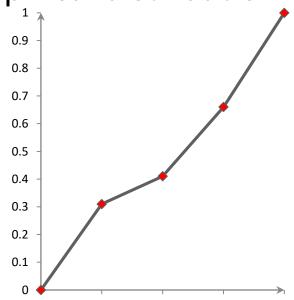
- Random variate generation using approximation method
 Generate two random numbers u₁ and u₂
 - Random variates x_1 and x_2 are given by:

$$x_1 = \mu + \sigma \sqrt{-2 \ln(u_1)} \cdot \cos(2\pi u_2)$$
$$x_2 = \mu + \sigma \sqrt{-2 \ln(u_1)} \cdot \sin(2\pi u_2)$$

Empirical Distribution

Could be used if no theoretical distributions fit the data adequately

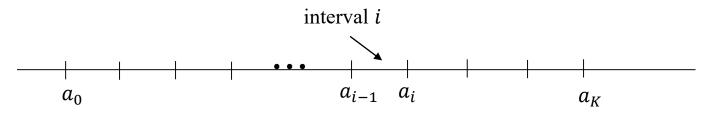
- Example: Piecewise Linear empirical distribution
 - Used for continuous data
 - Appropriate when a large sample data is available
 - Empirical CDF is approximated by a piecewise linear function:
 - the 'jump points' connected by linear functions



Piecewise Linear Empirical CDF

Empirical Distribution

- Piecewise Linear empirical distribution
 - Organize X-axis into K intervals
 - Interval *i* is from a_{i-1} to a_i for i = 1, 2, ..., K
 - p_i : relative frequency of interval i
 - $-c_i$: relative cumulative frequency of interval i, i.e., $c_i = p_1 + \dots + p_i$



- Empirical CDF: *K* intervals
 - If x is in interval i, i.e., $a_{i-1} < x \le a_i$, then: $F(x) = c_{i-1} + \alpha_i(x - a_{i-1})$

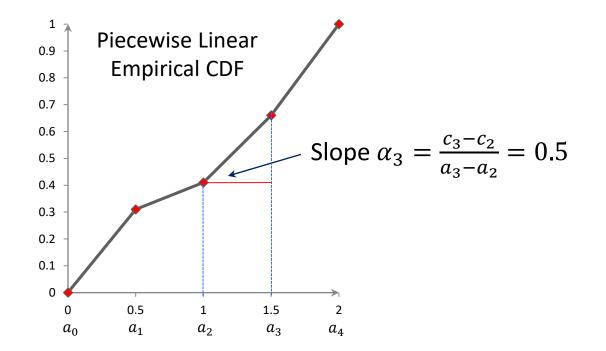
where, slope α_i is given by

$$\alpha_i = \frac{c_i - c_{i-1}}{a_i - a_{i-1}}$$

Example Empirical Distribution

Suppose the data collected for 100 broken machine repair times are:

	Interval		Relative	Cumulative	
i	(Hours)	Frequency	Frequency	Frequency	Slope
1	0.0 < x ≤ 0.5	31	0.31	0.31	0.62
2	0.5 < x ≤ 1.0	10	0.10	0.41	0.2
3	1.0 < x ≤ 1.5	25	0.25	0.66	0.5
4	1.5 < x ≤ 2.0	34	0.34	1.00	0.68



Empirical Distribution

- Random variate generation:
 - Generate random number u
 - Select the appropriate interval i such that

 $c_{i-1} < u \leq c_i$

— Use the inverse transformation method to compute the random variate x as follows

$$x = a_{i-1} + \frac{1}{\alpha_i}(u - c_{i-1})$$

Example Empirical Distribution

• Suppose the data collected for 100 broken machine repair times are:

	Interval		Relative	Cumulative	
i	(Hours)	Frequency	Frequency	Frequency	Slope
1	0.25 < x ≤ 0.5	31	0.31	0.31	1.24
2	0.5 < x ≤ 1.0	10	0.10	0.41	0.2
3	1.0 < x ≤ 1.5	25	0.25	0.66	0.5
4	1.5 < x ≤ 2.0	34	0.34	1.00	0.68

• Suppose: u = 0.83

$$c_3 = 0.66 < u \le c_4 = 1.00 \Rightarrow i = 4$$

$$x = a_3 + \frac{1}{\alpha_4}(u - c_3)$$

= 1.5 + $\frac{1}{0.68}$ (0.83 - 0.66)
= 1.75