Fluid Modeling of TCP in Wireless Networks

Majid Ghaderi

Department of Computer Science University of Calgary

Email: mghaderi@cs.ucalgary.ca

Web: http://www.ucalgary.ca/~mghaderi

A typical cellular network

Wireless bandwidth is limited and expensive

How expensive is spectrum?

_			
	Rogers	\$ 999,367,000	
Ī	Telus	\$ 879,889,000	For 20 MHz nation-wide
	Bell	\$ 740,928,000	
	Quebecor	\$ 554,549,000	
	Globalive	\$ 442,099,000	
	Data A/V	\$ 243,159,000	
	Shaw	\$ 189,519,000	
	SaskTel	\$ 65,690,000	
	MTS	\$ 40,773,750	
	Bragg	\$ 25,620,000	

Canadian spectrum auction in July 2008 raised \$4.25 billion.

In the US, Auction 73 in Jan 2008 raised \$19.592 billion!

TCP in wireless networks

- TCP is the dominant transport protocol
- □ TCP has poor throughput over wireless channels
 - Interprets channel errors as sign of congestion
- □ Various solutions to improve throughput
 - Transport layer mechanisms: change TCP [Balakrish95, Ludwig00, Chan04]
 - Link layer mechanisms: apply FEC, ARQ and power control [Barakat02, Liu02, Baccelli06, Barman04]

What is the problem?

- Modern 3G/4G wireless systems (CDMA2000, EV-DO, WiMax)
 - Low bit-error-rate
 - On-the-fly rate adaptation
 - Network dynamically changes channel rate
 - ➤ Goal: maximize MAC throughput subject to some target frame-error-rate (FER)
 - TCP cognizant!
 - ➤ How to exploit this for TCP benefit?

This talk

- Optimizing rate adaption to maximize TCP throughput
 - Determine a rate adaptation policy (i.e., scheduler) at MAC
 - Determine the set of rates at PHY

Outline

- □ TCP-aware resource allocation
- □ Single TCP session
- Multiple TCP sessions

References

[1] M. Ghaderi, A. Sridharan, H. Zang, D. Towsley and R. Cruz, **TCP-aware resource allocation in CDMA networks**, in Proc. *ACM Mobicom* 2006.

[2] M. Ghaderi, A. Sridharan, H. Zang, D. Towsley and R. Cruz, Modeling TCP in a multi-rate multi-user CDMA system, in Proc. Networking 2007.

TCP overview

- □ Reliable end-to-end communication
- Congestion control
 - OIncrease linearly if no packet loss

Previous work: static resource allocation

- Optimal fixed operating point
 - A priori optimization of system parameters (e.g., power level, coding rate) that maximize TCP throughput
- Optimizing Forward Error Correction (FEC) coding rate
 - Trade-off between channel rate and packet error probability
 - A single coding rate that maximizes TCP throughput → Static coding

Coding trade-off: rate vs. error

Coding rate
$$(\rho) = \frac{\text{DATA}}{\text{DATA} + \text{FEC}}$$

Static coding

Adaptive coding

Outline

- □ TCP-aware resource allocation
- □ Single TCP session
- Multiple TCP sessions

Our approach: TCP-aware rate allocation

- Jointly optimize both the MAC and PHY layer parameters with respect to TCP dynamics
 - Adaptive rate allocation: Allocate channel rates based on TCP sending rate
 - Channel rate optimization: Choose a set of channel rates that jointly maximize TCP throughput across all potential rates at PHY

MAC: adaptive rate allocation

- How to allocate the channel rates?
- □ Assume two channel rates $C_0, C_1(C_0 \le C_1)$
- \Box C(t): allocated *channel rate* at time t
- $\square X(t)$: TCP sending rate at time t
- Wireless scheduler operates as follows:

$$C(t) = C_0 \text{ if } X(t) \le C_0$$

$$C(t) = C_1 \text{ if } X(t) > C_0$$

PHY: channel rate optimization

- ☐ How to select the channel rates?
- □ p_i : packet error probability when channel rate is C_i , i = 0,1
- \square R_i : RTT when channel rate is C_i
- \square A channel is specified by (C_i, p_i, R_i)
- □ Objective:

$$\underset{\text{all possible }(C_i,p_i,R_i)}{\operatorname{arg\ max}} \overline{X} \big\{\!(C_0,p_0,R_0),(C_1,p_1,R_1)\big\}$$

TCP fluid model for static rate allocation

- \square *p*: packet error probability *p* << 1
- \square R: round-trip-time
- □ *X*: TCP throughput
- □ *W*: TCP window size

$$X(t) = \frac{W(t)}{R} \Rightarrow \Delta X(t) = \frac{\Delta W(t)}{R}$$

Fluid approximation of TCP throughput

 \square #packets transmitted in Δt :

$$= X(t)\Delta t$$

□ Congestion: if at least 1 packet is lost

$$p_c = \Pr\{\text{congestion in } \Delta t\} = 1 - (1 - p)^{X(t)\Delta t}$$

 $\cong pX(t)\Delta t \quad \text{for } p << 1$

Fluid approximation of TCP throughput

AIMD:

• if no congestion: $\Delta W(t) = \Delta t/R$

Note: window increases by 1 packet in R if there is no congestion

• if there is congestion: $\Delta W(t) = -W(t)/2$

$$\Delta W(t) = (1 - p_c) \frac{\Delta t}{R} - p_c \frac{W(t)}{2}$$

Fluid approximation

Fluid approximation of TCP throughput

$$\Rightarrow \Delta X(t) = (1 - p_c) \frac{\Delta t}{R^2} - p_c \frac{X(t)}{2}$$

$$= (1 - pX(t)\Delta t) \frac{\Delta t}{R^2} - pX(t)\Delta t \frac{X(t)}{2}$$

$$\stackrel{\Delta t \to 0}{=} \frac{\Delta t}{R^2} - p\Delta t \frac{X(t)^2}{2}$$

$$\Rightarrow \lim_{\Delta t \to 0} \frac{\Delta X(t)}{\Delta t} = \frac{1}{R^2} - p \frac{X(t)^2}{2}$$

$$\Rightarrow \frac{d}{dt} X(t) = \frac{1}{R^2} - p \frac{X(t)^2}{2}$$
Stochastic differential equation

Illustration of TCP throughput: static rate allocation

Illustration of TCP throughput: adaptive rate allocation

Analytical model

- ☐ Fluid model for TCP throughput
 - A set of ODEs for the probability distribution of TCP throughput
 - Explicitly incorporates impact of two different Round-Trip-Times, two different packet error probabilities and two channel rates
 - Explicitly differentiates between losses due to congestion and channel errors

Deriving balance equations

$$P_0(x,t+dt) = P_0(x - \delta_0 dt,t)(1 - \gamma_0 x dt) + P_1(2x,t)(\gamma_1 2x dt)$$

$$P_1(x,t+dt) = 0$$

Diffusion equation

$$\frac{P_{0}(x,t+dt) - P_{0}(x,t)}{dt} + \delta_{0} \frac{P_{0}(x,t) - P_{0}(x-\delta_{0}dt,t)}{\delta_{0}dt} =$$

$$-\gamma_{0}xP_{0}(x-\delta_{0}dt,t)+2\gamma_{1}xP_{1}(2x,t)$$

let $dt \rightarrow 0$

$$\frac{\partial P_0(x,t)}{\partial t} + \delta_0 \frac{\partial P_0(x,t)}{\partial x} = -\gamma_0 x P_0(x,t) + 2\gamma_1 x P_1(2x,t)$$

let $t \to \infty$

$$\delta_0 \frac{dP_0(x)}{dx} = -\gamma_0 x P_0(x) + 2\gamma_1 x P_1(2x)$$

ODEs for throughput evolution

1.
$$0 < x < C_0 / 2$$

$$\begin{cases} \delta_0 \frac{d}{dx} P_0(x) = -\gamma_0 x P_0(x) + 2\gamma_0 x P_0(2x) \\ P_1(x) = 0 \end{cases}$$
2. $C_0 / 2 < x < C_1 / 2$

$$\begin{cases} \delta_0 \frac{d}{dx} P_0(x) = -\gamma_0 x P_0(x) + 2\gamma_1 x P_1(2x) \\ P_1(x) = 0 \end{cases}$$
3. $C_1 / 2 < x < C_0$

$$\begin{cases} \delta_0 \frac{d}{dx} P_0(x) = -\gamma_0 x P_0(x) \\ P_1(x) = 0 \end{cases}$$
4. $C_0 < x < C_1$

$$\begin{cases} \delta_0 \frac{d}{dx} P_0(x) = -\gamma_0 x P_0(x) \\ P_1(x) = 0 \end{cases}$$

$$\begin{cases} \delta_0 \frac{d}{dx} P_0(x) = -\gamma_0 x P_0(x) \\ P_1(x) = 0 \end{cases}$$

Mean TCP throughput

□ Solving ODEs using Mellin transform

$$\hat{f}(u) = \int_0^\infty f(x) x^{u-1} dx$$

Hint:
$$\overline{X} = \hat{f}(2)$$

TCP Throughput in the form of power series

$$\overline{X} = \frac{\Delta(2) + \sum_{k \ge 0} (\phi_{00})^k \prod_k (2) \psi(2 + 2k)}{\Delta(1) + \sum_{k \ge 0} (\phi_{00})^k \prod_k (1) \psi(1 + 2k)}$$

Model is accurate for low packet error probability

FEC comparison

- □ Coding trade-off:
 - Channel rate increases by increasing the coding rate
 - Packet error probability decreases by decreasing the coding rate
- □ Static coding picks one coding rate
- Adaptive coding picks two coding rates

Static versus Adaptive FEC

Orthogonal Walsh codes

- Walsh codes are used in CDMA systems
- ☐ The channel rate can be increased by decreasing the code length
- ☐ This however increases error rate
 - Somewhat mitigated with higher energy

Static versus Adaptive Walsh codes

Energy	Analysis		Simulations	
Profile	Tput Gain	Energy Savings	Tput Gain	Energy Savings
E_1	10.8%	-3.5%	14.95%	-3.5%
E_2	15.8%	-4.8%	20.5%	4.2%

Higher throughput with less energy!

Multiple channel rates

□ Simulation-based comparison using *ns*2

$$C(t) = \begin{cases} C_0 & \text{if } X(t) \le C_0 \\ C_1 & \text{if } C_0 < X(t) \le C_1 \\ C_2 & \text{otherwise} \end{cases}$$

	Two-rate	Three-rate	
BER	Tput (Kbps)	Tput (Kbps)	Gain
10^{-2}	62.9	64.3	2.2%
10 -3	81.4	82.6	1.5%
10 -4	91.7	91.7	0%

Outline

- □ TCP-aware resource allocation
- □ Single TCP session
- Multiple TCP sessions

Problem statement

- Only a few users can be simultaneously supported on high-rate channels
- □ Example: CDMA2000 1xRTT
 - Supports 30 users at 9.6 Kbps (called fundamental channel)
 - At most 2 users can be simultaneously allocated a 153.6 Kbps channel (called supplemental channel)
- How to allocate supplemental channels to competing TCP sessions?

Some notation

- □ *N* low-rate fundamental channels (i.e., *N* users in the system) fundamental channel \rightarrow (C_0 , p_0 , R_0)
- □ K (≤ N) high-rate supplemental channels supplemental channel $\rightarrow (C_1, p_1, R_1)$

Probabilistic preemptive scheduling

- ☐ If a session requests a supplemental channel and less than *K* supplemental channels occupied
 - Always assign a supplemental channel
- ☐ If all *K* supplemental channels are occupied
 - Randomly preempt a high-rate session with probability α
 - ODeny requesting session with probability 1- α

Extended single session model

- □ Single session TCP throughput
 - $\circ q$: acceptance probability
 - $\circ v$: preemption rate

loss or preemption (ν)

q and v depend on supplemental channel occupancy

Inter-session interactions

- □ Supplemental channel occupancy
 - $\bigcirc \lambda$: supplemental channel request rate
 - **υ**μ: supplemental channel release rate

 \square λ and μ come from the single session model

Fixed point model

Fixed point model is accurate

Network dimensioning

Summary

- □ TCP-aware rate allocation
- Analytical model to capture TCP dynamics with adaptive rate allocation
- Gains from 10% to 20% for a single TCP session compared to optimal static rate allocation
- Extensions to multiple TCP sessions